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�DEVELOP SYSTEM

Overview

The Develop System activity includes all software development activities, as well as some system engineering activities in which the software developer may participate during the project life cycle.  It does not cover management or planning activities.

Roles and Responsibilities

The system engineering group includes a collection of individuals, both managers and technical staff, who have the responsibility for specifying system requirements; allocating the system requirements to the hardware, software, and other components; specifying the interfaces between the hardware, software, and other components; and monitoring the design and development of these components to ensure conformance with their specifications [SEI, 1993].  The system engineering group is also responsible for performing the integration and integration testing of the various components.

The system test group develops the system qualification test cases and performs the system qualification testing.

The software engineering group develops the software products.

Note:  while this volume focuses on the software developer’s activities, software developers also may serve as members of the systems engineering group and/or the system test group.

Controls

The LaRC Systems Engineering Handbook for In-House Space Flight Projects [LHB 7122.1, Langley Research Center, Hampton, VA, August, 1994], providing an overview of the systems engineering process for LaRC projects.

MIL-STD-498 for Software Development and Documentation, describing the software products to be produced.  A subset of the MIL-STD-498 Data Item Descriptions (DID) are included in Appendix E of this Guidebook.

MIL-STD-498 Software Development Plan (SDP) (see Appendix E) and MIL-STD-498 Software Test Plan (STP) (see Appendix E) completed specifically for the project.

Inputs

The Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective.

Approved SCRs/Deviations and Waivers that document needed changes to software products (see activity 2.0 Perform Configuration Management).

Procedures

The SDP and STP have been specifically tailored for the project, and are used by the software engineering group to guide the development effort.  The following subactivities are not necessarily performed sequentially.  Subactivity 3.3 Participate In System Integration And System Qualification Testing may be started as soon as the system requirements start to be defined.  In fact, it is recommended that the system qualification test cases be developed (see activity 3.3.2.1 Develop System Qualification Test Cases And Procedures) concurrently with the system requirements to ensure the requirements are verifiable.  While the subactivities may not be started sequentially, they must be completed sequentially, because subactivity 3.2 Perform Software Development cannot be started until some subset of the system requirements is allocated to software, and subactivity 3.3 Participate In System Integration And System Qualification Testing cannot be completed until some subset of subactivity 3.2 Perform Software Development is completed.  The project’s system life cycle may not follow the traditional “waterfall" life cycle.  In some cases, the system may be iteratively developed:  some system requirements are defined, software development is performed, some system integration testing may be done, and then more requirements are identified.  Additional information on various system life cycles is in the System Development Life Cycle section (pp. 3-1 to 3-32) of the System Engineering Process course material [CSM, 1994].

Throughout the project, metrics are collected as planned in the SDP (see activity 1.1.1.5 Determine Metrics To Be Collected) and analyzed (see activity 1.2.1.3 Analyze Software Project Metrics).  This analysis may indicate areas that could be improved.  In addition, at any point during software development, SCRs may be received which may cause the software engineering group to iterate previously completed activities.  Due to necessary changes, deviations and waivers from the standard process may be granted.  The process for requesting a change to software products is documented in the Configuration Control section of the project’s Software Configuration Management Plan (SCMP).

The following activities are performed by the software engineering group to produce the software products:

1)  3.1 Participate In Systems Requirements And Design.  This subactivity describes the software developer’s participation in the system’s requirements analysis and design process.  This process is “owned” by the systems engineering group, and the software developer participates as a systems engineering group member.  When starting a new project, the software developer should begin by reviewing the Preliminary Mission Needs statement (when available).  The LaRC Systems Engineering Handbook for In-House Space Flight Projects (pp. 4-1 through 4-15) provides a good, high-level overview of the standard NASA project life cycle and processes.

2)  3.2 Perform Software Development.  This subactivity describes developing the software products (i.e., code and all documentation) and covers all software development activities from software requirements analysis to software qualification testing.  The SDP and STP provide the structure and guidance for all subactivities in this subactivity.  It is based on the software development activities described in MIL-STD-498 and the DIDs provided by the military standard.  All documentation created and/or completed in this subactivity is placed under configuration management (CM).

3)  3.3 Participate in System Integration And System Qualification Testing.  This subactivity describes the software developer’s participation in system integration and qualification testing.  This process is “owned” by the system test group, and the software developer participates as a group member.  This subactivity produces an integrated, working, qualified system that successfully completed system qualification testing.

Outputs

A “qualified” system that passed system qualification testing.

Development metrics.

Approved software products placed under Software Configuration Management (SCM).

�PARTICIPATE IN SYSTEMS REQUIREMENTS AND DESIGN

Overview

This activity describes the software developer’s participation in the system requirements analysis and design.  The system engineering group “owns” this process, and the software developer participates as a group member.  The subactivities included are commonly performed by software developers during systems requirements analysis and design.  They are not an exhaustive set of systems engineering activities, and do not cover project management activities, such as estimating costs and labor hours for this phase (see activity 1.1.1.1.4 Perform Cost Estimating).

Roles and Responsibilities

The systems engineering group includes a collection of individuals, both managers and technical staff, who have the responsibility for specifying the system requirements; allocating the system requirements to the hardware, software, and other components; specifying the interfaces between the hardware, software, and other components; and monitoring the design and development of these components to ensure conformance with their specifications [SEI, 1993].  The systems engineering group includes the software developer(s), as well as members of other disciplines (e.g., optics, hardware).  To maintain continuity, the systems engineering group should represent the “core staff” who will work on the project throughout its life cycle and educate members as they join the project.  Software developer(s) working in the systems engineering group must have experience from similar projects and a broad background that includes requirements and interface definition, development of embedded systems, and some understanding of software engineering management.  As a member of the systems engineering group, the software developer helps determine which system requirements should be allocated to software, and the feasibility of these requirements, and inform the other group members of the software limitations and constraints.  Furthermore, the software developer must understand the goals of the customer (usually a principal investigator or science team), the context under which the system will be used (usually the science which the system will support and the system’s target environment), and lessons learned from previous projects.

Controls

Controls vary widely based on the individual project.  Controls may include:

The Preliminary Project Plan defining the program-level requirements, management organization and responsibilities, and the program resources and schedule.  For a description of this plan, see Management of Major Systems Programs and Projects NHB 7120.5 (pp. 2-A-10 through 2-A-12).

The LaRC Systems Engineering Handbook for In-House Space Flight Projects [LHB 7122.1] gives guidance for selecting, tailoring, and implementing a systems engineering process for LaRC projects.

Inputs

Inputs vary widely depending on the project and when the software developer joins the systems engineering group.  Inputs can include any available system documentation such as:

The Preliminary Goals Analysis Document detailing the project goals, including the project background, vision, goals hierarchy, and identified constraints [LHB 7122.1, pp. 4-7, 6-2, B-7].

The Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective [LHB 7122.1, pp. 4-7 to 4-8, 6-5 to 6-8, B-8].

Any experiment documentation from previous similar experiments that may be reused on the project.

Any system product documentation with technical information on system products or standards that may be used during the project (e.g., MIL-STD-1553B, Intel 80386 documentation).

Any other documentation and memorandums on the system to be developed (e.g., the Performance Measures Statement listing and explaining the performance measures, including their relative importance [LHB 7122.1, pp. 4-9, 6-9, B-10]).

Any Configuration Change Requests (CCR) which indicate a change must be made in a system-level product (see activity 2.0 Perform Software Configuration Management).

Procedures

Systems engineering on a project establishes the requirements of the potential system, explores alternative system concepts, verifies the hardware/software architecture, and partitions the system into subsystems.

NASA LaRC projects follow a general, high-level life cycle that is summarized in Table 3.1-1.  Variations on this traditional waterfall life cycle are discussed in the System Development Life Cycle section (pp. 3-1 to 3-32) of the System Engineering Process course material [CSM, 1994].  Note:  software activities do not necessarily map one-to-one with the system activities due to the early need for software components.  The schedule and budget for these activities are described in the Preliminary Project Plan or other project plans (e.g., Pre-Phase A Work Plan, Phase A Study Plan). 

The documentation used and produced by the system requirements analysis and design vary with each project.  Chapter 6, “Systems Engineering Activities and Products,” of the LaRC Systems Engineering Handbook for In-House Space Flight Projects [LHB 7122.1], suggests a set of documentation for system phases and reviews.

Further Information.  Software developers who participate in systems engineering are strongly advised to consult the:

Management of Major Systems Programs and Projects. NHB 7120.5 NASA, Washington D.C., Nov. 8, 1993 (Chapter 2).

NASA Systems Engineering Handbook.  SP-6105, NASA, Washington, D.C., June 1995, pp. 13-20.

System Engineering Process - Sections 2, 3, 4, and 5, NASA course material, 4/24/94 developed by Center for Systems Management, Inc., 19046 Pruneridge Ave., Cupertino, CA 95014.

Technical Aspect of NASA Project Cycle - Charts developed by Center for Systems Management, Inc., 19046 Pruneridge Ave., Cupertino, CA 95014.

Table 3.1-1 Project Life Cycle (based on Table 1.3 of LHB 7122.1)

PHASE  �Systems Activities�Software Activities��Pre-Phase A: ADVANCED STUDIES�Define preliminary system requirements and concepts analysis�Support preliminary system requirements and concepts analysis��Phase A: PRELIMINARY ANALYSIS�System requirements definition, partition of system requirements into subsystems, conceptual trade studies�Software requirements definition for flight and ground support software, early code prototyping for other disciplines��Phase B: DEFINITION�Concept definition and preliminary system design�Completion of requirements definitions and preliminary design and prototyping for flight and ground support software

Requirements definition and preliminary design for simulation and post-mission data analysis software��Phase C: DESIGN

�Final system design and system engineering development�Software detailed design, coding, and unit testing of flight and ground support software 

Some software integration and informal integration with selected hardware components  

Informal software integration testing

Design and coding of simulation and post-mission data analysis software��Phase D: DEVELOPMENT

(often merged with DESIGN)�System fabrication, integration, test, and evaluation�Software integration and qualification testing, system integration and testing

Complete post-mission data analysis software��Phase E: MISSION OPERATIONS�Preflight and flight mission operations and disposal�Support of mission operations, and post-mission data analysis��During this activity, various documentation is referenced to aid in the system requirements and design.  Such documentation includes: the Preliminary Goals Analysis Document, Preliminary Mission Needs Statement, documentation from previous projects, system product documentation, and any other available system-related documentation.  This activity is decomposed into the following iterative subactivities in which the software developer is likely to participate.  Individual subactivities and groups of subactivities can be iterated several times, depending on how requirements and design activities are progressing.

1)  3.1.1 Define System Requirements.  In this subactivity, overall system goals and requirements are determined and documented.  Depending on the life cycle and project schedule, this may involve determining and documenting the entire set of set of system requirements in a single iteration.  Multiple iterations of this activity may be necessary to develop a complete set of system requirements.  The requirements may be documented in a MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent documentation.

2)  3.1.2 Define System Design.  In this subactivity, the system components and their interfaces are determined and documented.  Depending on the life cycle and project schedule, this may involve determining and documenting the entire system design.  Individual subactivities and groups of subactivities can be iterated several times depending on how requirements and design activities are progressing until the design is complete.  The system design may be documented in a MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation.

CCRs are received throughout a project (see activity 2.2.4 Request Software Product Change), and should prompt reviews of both the system requirements and system design activities to determine the full extent of required changes.

Outputs

This activity concludes when the system requirements are complete and allocated to the various system components.  The products produced during this activity vary, but they contain:

The inspected system requirements defining how the entire system functions: conveys what it receives as input and produces as output, and determines how it interacts with the environment, users, and other interfacing systems.  These can take the form of an SSS or other equivalent system products as directed by the project manager.

The inspected system design describing the various subsystems and their requirements.  The system design may take the form of a SSDD or other equivalent system documentation as directed by the project manager.

�Define System Requirements

Overview

In this activity, the system’s goals and characteristics are defined, including determining the information the system receives as input, produces as output, and how the overall system functions and interacts with the environment, users, and other interfacing systems.  This information is first expressed as general goals, and then refined into precise, verifiable requirements by iteratively performing this activity. 

Roles and Responsibilities

See parent activity 3.1 Participate In Systems Requirements And Design.

Controls

See parent activity 3.1. Participate In Systems Requirements And Design.

Inputs

The Preliminary Goals Analysis Document which gives details of the project goals.  The contents include the project background, vision, project goals hierarchy, and identified constraints [LHB 7122.1, p. B-7].

Any inspected system design materials available from previous iterations of system design activities (see activity 3.1.2 Define System Design).

Procedures

The subactivities performed now can vary widely between projects.  Because this activity may be iteratively performed with activity 3.1.2 Define System Design, some system design materials may be reused or be a basis for continuing to perform any of the subactivities.

The system developer should understand that a project may consist of several separate systems, each with its own requirements and design.  One common breakdown is separating flight and ground systems.  Each system may have its own set of documentation (e.g., requirements, designs), personnel, and management.

The software developer participates in the following subactivities, which are often performed iteratively and/or in parallel.  Goals are refined into detailed, verifiable requirements as the interfaces, modes, and scenarios are determined.  Interfaces are refined as the scenarios are developed, revealing additional data and information needs.  Mode definitions can lead to identifying new commands and situations that impact the system interfaces, and operational scenarios that must be developed, all of which must be captured in the system requirements.  The system requirements documentation may take the form of a MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E).

1)  3.1.1.1 Establish Project Goals and Requirements.  In this subactivity, based upon the Preliminary Goals Analysis Document, the systems engineering group defines the project’s technical and scientific goals, and refines them into detailed, verifiable requirements.

2)  3.1.1.2 Define System Interfaces.  This subactivity determines and defines the system’s external interfaces.  Most space missions are fundamentally concerned with the generation or flow of information.  Thus, the system’s interfaces and the information flow between systems is of primary importance.

3)  3.1.1.3 Develop Operational Scenarios.  This subactivity determines and defines how the entire system responds to external events and its general functionality.

4)  3.1.1.4 Determine Required System Modes.  This subactivity determines and defines the various system modes and how the system transitions between them.

5)  3.1.1.5 Participate in System Requirements Inspection.  In this subactivity, the resulting system requirements are inspected and submitted to project-level configuration management (CM).

Outputs

The defined, documented, and inspected system requirements, including the specified requirements, interfaces, scenarios developed, and the required modes and their transitions.  These may take the form of a SSS or equivalent systems requirements documentation.

�Establish Project Goals And Requirements

Overview

In this activity, the software developer helps establish technical performance and scientific goals, which then are refined into the system requirements.  The software developer is particularly attentive to any project goals or requirements that may affect software, such as data throughput.  The software developer also looks for opportunities to use commercial products or reuse software components and/or documentation from past projects. 

Roles and Responsibilities

The software developer, as member of the systems engineering group, helps develop the system’s goals, requirements, and constraints, and document and analyze projected risks.

Controls

See parent activity 3.1.1 Define System Requirements.

Inputs

The inputs vary widely based on the project and when the software developer joins the systems engineering group.  Inputs may include available system documentation such as the following: 

The Preliminary Goals Analysis Document which gives details of the project goals.  The contents include the project background, vision, project goals hierarchy, and identified constraints [LHB 7122.1, p. B-7].

System interface descriptions (see activity 3.1.1.2. Define System Interfaces).

Operational scenarios (see activity 3.1.1.3 Develop Operational Scenarios).

Mode definitions and transitions (see activity 3.1.1.4 Determine Required System Modes).

Defects found during a formal inspection and documented on a defect list (see activity 3.1.1.5 Participate in System Requirements Inspection).

Procedures

Systems engineering often is a trade-off between the system’s physical, electrical, mechanical, and human characteristics - physical size and shape; cost; power; hardware/software capabilities; software size; memory capacity; durability; maintainability; availability; and reliability are factors to consider.  These trade-offs exist in non-flight systems (e.g., ground support, mission operations, and post-mission data analysis software) where memory size, central processing unit (CPU) speed, space for workstations, and other limitations exist.  The trade-offs are much more critical and limiting in embedded flight systems, where, for example, a hardware subsystem may be limited in weight and may have to fit on a single circuit board.  Unique software issues must be considered, such as monitoring periodic stimuli within time constraints, responding to aperiodic stimuli within a time limit, and gathering certain amounts of information with certain bus bandwidths and speeds.  In both cases, goals (e.g., desired values such as power, memory, capacity, throughput, speed) are set for mechanical, electrical, and software subsystems, and may be partially defined in the Preliminary Goals Analysis Document or other system-related documentation or memorandums.  

Subcomponents and software elements under those subsystems are assigned goals based on higher-level goals.  These goals also impose administrative and/or physical constraints (e.g., budgets, sizes, weights) which must be met.  All too often, software processing goals are not set or are set as an afterthought.  Thus, the resulting software expectations become unrealistic before development starts.

The software developer ensures that software processing goals are:  1) set in tandem with mechanical and electrical goals; 2) realistic, based on the projected software functionality and documents from past experiments, and/or other system products; and 3) fall within budgets with sufficient margins.  NASA recommends that 30% margins be maintained until a project’s Preliminary Design Review (PDR) time frame.  A project breaking new technological ground may maintain 40% margins.  Margins of 10% usually are sufficient at the Critical Design Review (CDR) (see LHB 7122.1, Section 7.5).

For space projects, software is normally required in four areas:

Flight software for on-board instruments to control the various flight components.

Ground support (simulation) software needed to test and validate the flight software or hardware and associated interfaces and data.

Mission operations software needed to acquire the science/instrument data on the ground and issue commands to the system in-flight.

Post-mission data analysis software needed to analyze the mission data.  This involves preparing the data in a format suitable for the science personnel.

The software developer continually monitors the goals and margins for these areas, and the requirements allocated to software, and alerts the project manager to any risk areas.  Because the life cycle may not be a sequential waterfall, the software developer carefully reviews any system requirements and designs developed in prior iterations to fully understand the system and the full set of requirements allocated to the software.

Throughout this activity, the systems engineering group must balance science goals against technology, platform, cost, schedule, and other constraints.  The systems engineering group must develop reasonable goals under these constraints.

If defects are corrected based on the defect list, the group carefully reviews all goals and requirements to verify that the correction does not have an impact on other goals or requirements, or violate a system constraint.  The group also determines if correcting a goal or requirement also affects the system interfaces (see activity 3.1.1.2 Define System Interfaces), operational scenarios (see activity 3.1.1.3 Develop Operational Scenarios), and/or the system mode definitions and transitions (see activity 3.1.1.4 Determine Required System Modes).

1)  The software developer begins by reviewing and understanding the single, top-level goal for the project.  This goal is usually defined by the customer, user, or principal investigator.  It may be found in the Preliminary Goals Analysis Document [LHB 7122.1].  If this goal has not been defined, the group must work with the customer, user, or principal investigator to define this goal.  The software developer also reviews any available system documentation which describes in more detail the goals for the project.  A system engineering notebook may be kept in which the system engineering group records interviews, notes, etc.

2)  The software developer researches and documents the current available technology or the status of other projects related to this goal.  At this point, the software developer identifies past software projects or reusable components relating to this goal or operating in a similar domain.  Documentation or code obtained from these projects may be reused.  Information on these reuse sources may be kept in a systems engineering notebook.  Specific attention should be paid to any “lessons learned” from those projects.  The customer, technical library, other experienced software developers, software reuse libraries or repositories, or the software engineering process group (SEPG) are often excellent sources for identifying reuse candidates and lessons learned from prior projects.  The software developer carefully reviews this information to understand the system and software issues of these past projects, and how they may relate to the new project.

3)  The software developer, as a member of the systems engineering group, helps determine the high-level project goals.  The desired system output begins to be defined.  These high-level goals should be clearly understood by all systems engineering group members, and reviewed by the customer, usually a principal investigator or science team, for accuracy.

4)  The software developer, as a member of the systems engineering group, helps refine the general goals into more specific ones and eventually into specific system requirements.  As the goals are refined, issues such as the type and amount of data needed by the scientists to accomplish their goals, and the time constraints controlling the collection of data are identified.  Because this activity is performed iteratively and/or in parallel with activities 3.1.1.2 Define System Interfaces, 3.1.1.3 Develop Operational Scenarios, and 3.1.1.4 Determine Required System Modes, information about scenarios, modes, and system interfaces may be used to define the goals and requirements.  Several types of goals (and, eventually, requirements) must be considered:

A)  Functional goals and requirements defining how well the system must perform to meet its objectives.

B)  Operational goals and requirements determining how the system operates, and how users interact with it to achieve its broad objectives.

C)  Budget and schedule requirements limiting the project’s cost and available time.

D)  System quality requirements, which may include reliability, maintainability, availability, and reusability.

E)  Design and construction requirements, which include the system’s physical characteristics, materials that may be used, required design, construction standards, etc.

A “goals tree” is one method of refining goals into more specific system requirements (see the Goals Tree section 3.3, pp. 3-2 through 3-6, of the  LaRC Systems Engineering Handbook for In-House Space Flight Projects,  LHB 7122.1, for the details of this method).

Example:

General goals can include:

Measure distribution and optical properties of tropospheric aerosols, tropospheric clouds, polar stratospheric clouds, and stratospheric aerosols during volcanically perturbed periods.

Correlate the project data with data obtained from another satellite.

Collect data to verify mathematical models.

Measure and map the earth’s water vapor.

From the general goals, more specific goals (and specific requirements) are iteratively defined:

Example:

Measure the distribution and depth of tropospheric aerosols over any underlying surface during day and night.

Correlate the data received using a 500 km orbit (97.1 degree inclination) with data from another satellite in a similar orbital path.

Measure the changes in distribution and depth of water vapor over Antarctica over a 72-hour period to correlate mathematical models

Measure actual water vapor concentrations between altitudes of 15-20 km over Antarctica over a 72-hour period

As the detailed goals and requirements are developed, they are recorded in the Requirements section of the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation.  A system-level data dictionary is established to precisely define system terms.  The data dictionary should an appendix to the SSS.

5)  The software developer lists science and engineering goals and requirements which may directly or indirectly affect software performance (e.g., data throughput, data compression, user interfaces, data storage, motor control, system monitoring).  This list may be kept in a system engineering notebook or other location as directed by the project manager.

6)  Based on knowledge of past projects, the software developer identifies to the group any high-risk, undefined, or poorly defined areas to be refined.

Example:

High-risk goals and requirements include:

System goals and requirements involving external interfaces with another system under development (the interfaces are likely to change).

System goals and requirements which involve developing new technologies.

System goals and requirements for receiving inputs with a poorly defined range.

The identified risks are analyzed and documented in a system engineering notebook or something similar, as directed by the project manager.  The software developer continually reviews the requirements to identify risk areas, and provides information on alternative, more realistic goals and trade-offs on each issue.  These are discussed at systems engineering group meetings so other members and project management know the risks.

7)  Once the goals are refined into detailed requirements, the systems engineering group:

A)  Verifies that the quantitative measures of all requirements are realistic (e.g., checks that the amount of data to be received and stored is realistic for current available technology).

B)  Checks each requirement for verifiability and technical performance (e.g., data transfer speeds, storage available).  Any requirement that cannot be verified (via test, analysis, demonstration, similarity, inspection, simulation, etc.) is meaningless.

C)  Verifies that each requirement tracks back to a project goal.

D)  Verifies that the requirements meet the high-level project goals.  Goals or requirements that do not directly relate to the high-level goals are carefully reviewed by the systems engineering group to determine if they are necessary because they could unnecessarily increase the cost or lengthen the project schedule.

Any system requirement which does not conform to one or more of the above validations is rewritten (to make it more realistic and verifiable) or removed (because it does not track to or meet a project goal).

Outputs

Project goals and requirements which are documented in the Requirements section of a SSS or other equivalent system documents.

�Define System Interfaces

Overview

This activity identifies and provides a general understanding of the required system interfaces (i.e., external system interfaces).  The inputs and outputs are identified and described in the System External Interface Requirements section of the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation.

Roles and Responsibilities

The software developer, as a member of the systems engineering group, helps define and document the required system interfaces.

Controls

The selected method of portraying command and data flow parameters determined by the selection and availability of system engineering tools, and the system requirements analysis methodology selected by the systems engineering group.

Inputs

The project goals and/or requirements with varying detail levels, depending on the iteration (i.e., the first iterations are very rough; the final is ready for inspection) (see activity 3.1.1.1 Establish Project Goals and Requirements).

System operational scenarios (see activity 3.1.1.3 Develop Operational Scenarios).

System mode descriptions, definitions, and transitions (see activity 3.1.1.4 Determine Required System Modes).

Defects documented on a defect list found during a formal inspection (see activity 3.1.1.5 Participate In System Requirements Inspection).

Procedures

These procedural steps are iteratively performed as information on the required interfaces becomes available.  When correcting defects, the systems engineering group ensures that the changes are incorporated into the system requirements (see activity 3.1.1.1 Establish Project Goals and Requirements).  The systems engineering group also determines if correcting a system interface affects the operational scenarios (see activity 3.1.1.3 Define Operational Scenarios), or the system mode definitions and transitions (see activity 3.1.1.4 Determine Required System Modes).  The following steps are common to most methodologies for modeling system interfaces.

1)  The systems engineering group first identifies all system input sources such as:  human users, environmental elements (e.g., radioactive source), the platform, Space Station Freedom, or other interfacing systems.  The general types of input (e.g., user commands, X-rays, light) these sources provide are determined.

2)  The systems engineering group identifies all destinations for the system’s output, such as an external database system, the platform, hardware devices, or a video display.  The system’s general type of output (e.g., ASCII text files, MIL-STD-1533B, 256 color bitmaps) is determined in a general sense.

3)  A diagram is then produced which graphically shows all system inputs and outputs according to the selected methodology.  This could be a formal context diagram (as defined in Colbert’s Object-Oriented Software Development method in Attachment II) as shown in Figure 3.1.1.2-1 or an informal one similar to the diagram in Figure 3.1.1.2-2.  Note:  in these examples, the system is limited to a flight instrument.  On a project, there also may be a ground support, data analysis, mission operations, or other systems with separate sets of requirements.  These systems’ requirements should be defined and documented as early as possible in the project schedule.

4)  The system engineering group carefully reviews the preliminary technical goals and requirements (see activity 3.1.1.1 Establish Project Goals and Requirements) and any available scenarios (see activity 3.1.1.3 Develop Operational Scenarios) and/or mode definitions and transitions (see activity 3.1.1.4 Determine Required System Modes) to verify that all required system inputs and outputs have been accounted for in the diagram.  Information from the goals and requirements may describe the format and type of system inputs and outputs.  Any documentation describing external systems with which the system interacts is carefully reviewed for information on the required data formats, rates, ranges, and required accuracy.  Based on the selected method of portraying command and data flows, the systems engineering group begins identifying the needed commands to be issued to the flight system, data for time correlation (i.e., what data must be time stamped), and other data (e.g., external temperature, radiation levels, air pressure) the scientists need to accomplish their goals.
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Figure 3.1.1.2-1 Example of Formal Context Diagram

The trade-offs of processing data in space or on the ground are determined by various factors including processor speed, available memory, onboard data storage capacity, and downlink time. 

Any necessary housekeeping data (i.e., information supporting the mission, such as power, motor temperatures, motor torque) is identified.
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�����Figure 3.1.1.2-2 Example of Informal System Input and Output Diagram 

5)  At this time, the data dictionary is updated to include precise definitions of each input and output.  The data dictionary is a tool throughout the system requirements and design process.  Initially, it contains only general definitions of input and output categories.  As the system definition and design progresses, individual commands, data elements, or other input and output details are identified and entered into the data dictionary, along with their description and any relevant details concerning the data type (e.g., Boolean, 16-bit 2s complement), units (e.g., watts, rad/sec, volts), range limits (e.g., m to n), accuracy (e.g., within  (5%.), precision (e.g., number of significant digits), size (in bytes, words) (see activities 3.1.2.2 Define System Interfaces, 3.1.1.3 Develop Operational Scenarios, and 3.1.1.4 Determine Required System Modes).

In the previous examples, data dictionary entries would be made for: 

Instrument and science data

System commands and associated parameters

Backscatter signal data

Laser pulse

A sample preliminary data dictionary entry is:

Example:

System commands and associated parameters.  This category includes all commands and the command parameters entered by users.  This will include commands to change system configurations, start and stop data collection, and to control altitude and laser pulses.  Typical command parameters will include temperature and pressure limits, as well as altitude adjustments.

6)  The defined system interfaces, accompanying data dictionary and diagrams are documented in the System External Interface Requirements section or as an appendix of the SSS or other equivalent system documentation.

�Outputs

The system interface descriptions, including the source of system inputs, destinations for system outputs, and the system inputs and outputs that are generally described, diagrammed, and documented in the System Interface Requirements section or as an appendix to the SSS or equivalent system documentation.

�Develop Operational Scenarios

Overview

Operational scenarios, a key method of deriving a system’s functional requirements, are incorporated into the system requirements document (e.g., MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation), and also used to develop system and software test procedures (see activity 3.3.2.1 Develop System Qualification Test Cases And Procedures).

Roles and Responsibilities

The software developer, as a member of the systems engineering group, together with the group and the principal investigator and potential users, develops the operational scenarios.  During this activity, the following roles are assigned to systems engineering group members:

The recorder documents all scenarios, updates the data dictionary, and records issues and other information that has been discussed in the scenario meetings.

The domain experts (e.g., the principal investigator, potential users, and other individuals with a detailed knowledge of how the system should perform and can make decisions on the system performance) describe the system operations.

The coach leading the meetings has experience developing scenarios.

Controls

The selected method of developing and documenting the scenarios.  The availability of system engineering tools affects the methods of developing and documenting the scenarios.

Inputs

Project goals and/or requirements that vary in level of detail depending on the iteration (see activity 3.1.1.1 Establish Project Goals And Requirements).

Preliminary system interface descriptions (see activity 3.1.1.2 Define System Interfaces).

System mode definitions and transitions (see activity 3.1.1.4 Determine Required System Modes).

Defects documented on an inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections) during formal inspection (see activity 3.1.1.5 Participate In System Requirements Inspection).

Procedures

These steps are common to most of the methodologies for developing and documenting scenarios.  This activity is iteratively performed as details are added when the scenarios become better defined.  For more information on scenarios, see:

M. Coats, J. Ragan, B. Biekert, C. Kennedy, T. Peterson, “User-Oriented Requirements Analysis.  A Clean Room Approach for Object-Oriented Development,” IBM Federal Sector Services Corp., Houston, TX, 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modeling and Design.  Englewood Cliffs, NJ: Prentice-Hall Inc., 1991, pp. 169-172.

G. Booch, Object-Oriented Analysis and Design with Applications, Second Edition, Benjamin/Cummings Publishing Company, Inc., Reading, MA., 1994, pp. 305 - 312.

This activity clarifies and defines the required system operations.  It is important to maintain and update the data dictionary (see activity 3.1.1.1 Define System Goals and Requirements) throughout this activity.  Any assumptions or constraints on using a term should be documented in the data dictionary to eliminate ambiguity.

If available, any preliminary project goals or requirements, interface descriptions, documentation from previous projects, and mode descriptions are referenced throughout this activity to ensure scenario accuracy and maintain consistent terminology.

If a defect, found during a formal inspection and documented on a defect list, is being corrected, each step is reviewed to verify that no additional changes are needed.

Step 1 is performed first, and the rest of the steps then are sequentially performed and iterated through as many times as necessary.  The purpose of the iterations is for refinement of details in the scenarios, first covering normal operations, and then again for handling error situations.

1)  In this activity, domain experts (e.g., the principal investigator, potential users, hardware designers, laser or cryo-cooler experts, and any other individuals with a detailed knowledge of how the system should perform and who can make decisions on the system performance) interact with an assigned member of the systems engineering group (i.e., the coach), to produce clear, well-defined, user-based scenarios.  The domain experts should have experience with similar projects and be able to make sound technical decisions.  The coach leads the session and has experience developing scenarios.  This person has strong leadership qualities and helps select domain experts.  The coach's goal is to extract well-defined scenarios from the domain experts.

It is recommended that no more than seven domain experts participate in the scenario definition sessions because it becomes increasingly more difficult to reach a consensus with more than seven domain experts.  No scenario meeting should continue for more than two hours [Coats, 1994, p. 18].

The coach also selects the recorder, who documents all scenarios, updates the data dictionary, and records issues and other information discussed in the scenario meetings.  The recorder provides updated copies of the product before each meeting.

2)  Participants identify all external system interfaces being constructed that directly originate some event (i.e., information exchange between the system and an outside agent).

The systems engineering group reviews any available system interface descriptions to determine the event sources.  Interfaces that only receive system output and cannot generate inputs do not originate events.  Thus, the interfaces identified here are a subset of those identified in activity 3.1.1.2 Define System Interfaces.  The recorder maintains a list of sources originating events which are identified by the systems engineering group.

Example:

Sources include:

The user who issues system commands and associated parameters.

The backscatter signal received by the system’s sensors.

3)  Develop the scenarios.  A scenario is a series of events.  There are two types of events:

External Event.  An external event is originated by an agent outside of the system.

Example:

External events include:

Commands issued by users.

An environmental change causing the system to reconfigure itself.

An input received from another interfacing system.

Effect Event.  An effect event is directly triggered by an external event or another effect event.  An effect event may be divided into a more detailed set of effect events.  A scenario consists of one external event, followed by one or more effect events.  To reduce redundancy, one scenario may “call” another because the same effect events may occur in different situations.

In the early sessions, the group focuses on scenarios for “normal” situations, without getting bogged down in handling errors or bad data.  These situations must be addressed after the normal situations and actions are clearly defined and understood.

Because a scenario has two event types (i.e., external and effect events), this step is divided into two substeps.  It is important to complete substep A before attempting substep B so the group understands the interfaces before starting work on the individual scenarios.  This facilitates planning meetings because an estimate of the number of scenarios is available.

A)  For each event source defined in step 2, identify all events providing external system stimulation. The recorder documents each event.

Example:

Events originated by outside agents:

The user issues a command to the system to begin gathering data.

The user issues a command to the system to stop gathering data.

The user issues a command to the system to perform a self-diagnostic.

The user issues a command to the system to go into a “standby” configuration.

The target surface moves from darkness into daylight.

The target surface moves from daylight into darkness.

The target surface emits radiation.

An external system requests the radiation measurements be downloaded.

B)  For each external event, determine all effect events.  This can require having multiple sets of scenarios for a single event identified above to capture the series of effect events during normal and off-normal situations.  Each scenario is assigned a unique number for tracking.  Scenarios are developed by defining all possible effect events that can be triggered by the single external event originated by an outside agent, and the order in which the effect events may occur.  The coach prompts the domain expert to define the effect events for each external event defined in substep A.  The recorder documents the effect events for the group as they are defined, and keeps the data dictionary and the interface definitions updated with any information gathered during the sessions.

Example:

Scenario:

External Event: 

The user issues a command to the system to go into a “standby” configuration.

Effect Events:

The instrument stops firing the laser.

The instrument stops gathering science data.

The instrument ceases transmission of the science data.

The instrument awaits a new command.

In Coat’s user-oriented requirements method [Coats, 1994, p. 5], this scenario would be graphically shown as illustrated in Figure 3.1.1.3-1: 
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Figure 3.1.1.3-1 Example of a User-Oriented Requirements Method Scenario

4)  Experience shows that identifying errors in scenarios before the system design begins allows corrections to be made with less cost.  The domain experts check each scenario as they step through simulated system interactions.  The systems engineering group can graphically map how one scenario may lead to others [Coats, p. 6].  The group looks for any scenarios that do not prompt other scenarios, indicating that a scenario might be missing.  The recorder verifies that the data dictionary and the interface definitions are updated with any information gathered during the sessions.

5) The functional system requirements can be mapped to the scenarios using a traceability matrix incorporated into the System Capability Requirements section of the SSS or other system requirements document.  This table contains the number of each scenario mapped to the individual system requirements.

Outputs

The set of system-level operational scenarios developed and documented in the System Capability Requirements section of the SSS or other equivalent system requirement documentation.  The traceability matrix also is in this section, mapping the scenarios to the textual system requirements. 

�Determine Required System Modes

Overview

In this activity, the systems engineering group defines the system’s major modes and the transitions between them.  Note:  under MIL-STD-498, the distinction between modes and states is arbitrary.  For this activity, a mode is defined as an operating circumstance that has a pre-defined result triggered by an input at a particular time.  The definition of modes and mode transitions also provide insight into the system inputs (because mode transition commands may be required) and determining requirements (because the system may be required to perform certain functions in each mode).

Roles and Responsibilities

The software developer, as a member of  systems engineering group, determines and defines the system’s modes and mode transitions.

Controls

The methodology to define and document the system modes.

Inputs

The inputs vary widely based on the project and when the software developer joins the systems engineering group.  Inputs can include any available system documentation, such as the following: 

The project’s goals and/or requirements (see activity 3.1.1.1 Establish Project Goals And Requirements) vary in detail level depending on the iteration (i.e., the first iterations are very rough, the final is ready for inspection).

The system interface descriptions and definitions (see activity 3.1.1.2 Define System Interfaces).

Any system operational scenarios (see activity 3.1.1.3 Develop Operational Scenarios).

Any defects as documented on a defect list developed during a formal inspection (see activity 3.1.1.5 Participate In System Requirements Inspection).

Procedures

The systems engineering group carefully reviews all available documentation from related past projects.  The group identifies modes (or states) used and why they were selected.  The group also reviews any external interface definitions and descriptions, goals and/or requirements, and the operational scenarios developed for the current project for expected types of operations, user commands, and the system behavior under various conditions.

If a defect, found during a formal inspection and documented on a defect list, is being corrected, each step is reviewed to verify that no additional changes are needed.

The following steps are sequentially performed:

1)  The system modes are defined and documented, and usually divided into inactive and active modes.  Inactive modes are usually “safe” or “standby” modes in which the system is waiting for a command or event, as well as “fail” or “shutdown” modes in which the system operation is terminated.

Example:

Inactive Mode:

Standby Mode - The system is placed in a protected configuration, such as the  system’s initial mode (i.e., upon power up).

Shutdown - The system ceases all operations and is powered down.

Active modes are those modes in which the system is performing some function or activity.

Example:

Active Mode:

Day Mode - The system is configured to gather data under daylight conditions.

Night Mode - The system is configured to gather data under dark conditions.

Built-In-Test Mode - The system is configured to determine the health, status, or characteristics of the system.

Autonomous Mode - The system gathers environment data via sensors, and based on these sensor readings, transitions to Day Mode or Night Mode.

2)  The transitions between each of these modes should be clearly defined and documented.  The transitions are triggered by an event (e.g., an environment change, receipt of a command, desired temperature achieved, data gathering cycle complete, pressure limit exceeded).

Example:

The following commands shall be used to transition between modes:

The Go_To_Standby command terminates any data collection.  All data acquisition is halted, the system is placed in a protected configuration, and all operations are halted until another mode transition command is received.

The Go_To_Built_In_Test_System_Data_Take command transitions out of any other mode and goes into Built-In-Test mode until another mode transition command is received.  The system configures itself to determine and report its health status and characteristics.

The Go_To_Day_Data_Take command transitions the system out of any other mode and into Day Mode.  The system configures itself to gather data under daytime conditions.  The system remains in Day Mode until another mode transition command is received, or the sensors indicate that the target is no longer in daylight.  The system then transitions to Standby Mode.

The Go_To_Night_Data_Take command transitions the system out of any other mode and into the Night Mode.  The system configures to gather data under dark conditions.  The system remains in Night Mode until another mode transition command is received, or the sensors indicate that the target is no longer in darkness.  The system then transitions to Standby Mode.

The Go_To_Autonomous_Data_Take command transitions the system out of the current mode and into the Autonomous Mode.  The system gathers environmental data via sensors and, based on these readings, transitions to Day Mode or Night Mode.  Thus, this mode is transitional in nature.

The Go_To_Shutdown (a terminal mode) command causes the system to cease all operations, be placed in a protected configuration, and power down.

3)  Based on the methodology being used, a mode diagram may be drawn depicting the modes and their transitions.  Using the modes described above, as well as additional modes to make the diagram more complete, Figure 3.1.1.4-1 shows a mode transition diagram using an object-oriented software development methodology.

4)  The systems engineering group should review the modes and transitions to ensure  they are all defined.  A mode transition table may be constructed for this purpose as shown in Table 3.1.1.4-1.  In a mode transition table, the modes are listed along the left vertical column, the events causing the transition are listed along the top horizontal row, and the intersections are filled in with legal transition events.  Each row represents a system mode.  Each table entry indicates the new mode the system will transition to when the event occurs.  The systems engineering group should ensure each mode (except the initial mode) is reachable by transitioning from at least one other mode, and can transition to at least one other mode (unless it is a terminal mode).

As the modes and mode transitions become defined, they are documented in the Required States and Modes section of the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system requirements documentation.  All external events, such as mode transition commands, are added to the system interface description and the system-level data dictionary, and should be covered by the scenarios, as well.

Outputs

The mode definitions and their transitions which are defined and documented in the Required States and Modes section of the SSS or other equivalent system documentation.
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Figure 3.1.1.4-1 Example of a Mode Transition Diagram



Table 3.1.1.4-1 Example of a Mode Transition Table
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Overview

The formal inspection is a means of finding and eliminating defects in the current version of the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or equivalent system requirements documentation.  The formal inspection process is documented in the Instructional Handbook for Formal Inspections.

Roles and Responsibilities

The project manager assigns individuals from each of the various disciplines (e.g., hardware, software, optics) to the inspection team.  It also helps to have an individual experienced with system testing be an inspector to determine whether the requirements can be verified.

The inspection team conducts the formal inspection.

Controls

The Instructional Handbook for Formal Inspections documents the formal inspection process.

Inputs

The system requirements document, which may take the form of a SSS, includes the system goals and requirements, command and interface descriptions, scenarios, trace matrix mapping the scenarios to the text system requirements, data dictionary, and mode definitions and transitions (see activities 3.1.1.1 Establish Project Goals And Requirements, 3.1.1.2 Define System Interfaces, 3.1.1.3 Develop Operational Scenarios, and 3.1.1.4 Determine Required System Modes).

Procedures

The SSS meets all inspection entrance criteria.  The document is spell checked.  It is level checked if a computer-aided software engineering (CASE) tool is used.  The material to be inspected may vary between projects but should include the set of system goals and requirements, system interface descriptions, scenarios developed, data dictionary, trace matrix mapping the scenarios to the text system requirements, and descriptions of all system modes and mode transitions.

1)  The project manager should select the individuals who will take part in the formal inspection of the system requirements.  The selection of the inspection team is discussed in the Planning Stage section and Appendices E (particularly inspection type SY) and F of the Instructional Handbook for Formal Inspections.

2)  The formal inspection is conducted as documented in the Instructional Handbook for Formal Inspections.  In addition to the items on the Functional Requirements Checklist in the Instructional Handbook for Formal Inspections, the following questions should also be answered:

Are the system goals adequately represented by verifiable system requirements?

Are all inputs and outputs (commands and parameters) clearly defined and documented in the data dictionary?

Are the sources/destinations for all system inputs/outputs clearly defined?

Are the system requirements mapped back to the system goals?

Do any scenarios end in situations where no other scenario can be started?

Do the scenarios cover all possible normal and error situations?

Is the set of external events consistent with the defined system inputs and outputs?

Based on the set of commands and parameters, are any external events not identified?

Is the initial mode defined?

Are all modes reachable (i.e., a series of events is defined so that starting with the initial mode, all other modes can be reached)?

Are all actions associated with each mode transition clearly defined?

Is a final mode defined (if appropriate)?

3)  All errors found during the formal inspection are documented on an inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections) and tracked until closure.  The system requirements are then corrected and, if necessary, re-inspected.  Once all the errors are corrected, the system requirements are deemed “inspection certified” and submitted to the project-level configuration management (CM) organization for control.

Outputs

The inspected system requirements which may take the form of a SSS or other equivalent systems requirements documentation and submitted to the project-level configuration management organization.

The inspection defect list documenting the defects found during the formal inspection.

�Define System Design

Overview

In this activity, the various subsystems (i.e., the system components), their execution concept (e.g., how the subsystems interact during system operation, control and data flow), and their interfaces are defined and documented.  The MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system requirements documentation provides the information to start this activity.  The system-level requirements may be refined and allocated to the various subsystems as the design decisions are made.  In some cases, various system design subactivities may be performed to help refine the system requirements.

Roles and Responsibilities

See parent activity 3.1 Participate In Systems Requirements And Design.

Controls

See parent activity 3.1 Participate In Systems Requirements And Design.

Inputs

The inspected system requirements as documented in the SSS or other equivalent system requirements documentation.  This documentation includes:  the system goals and requirements, command and interface descriptions, scenarios, trace matrix mapping the scenarios to text system requirements, data dictionary, and mode definitions and transitions (see activity 3.1.1 Define System Requirements).

Procedures

On some projects, multiple designs may be created and reviewed before one is selected because there is no standard way of establishing the best design.  Depending on the project, the best design may be the one that minimizes cost, weight, power, or the one that maximizes functionality, safety, maintainability, or reliability.  When beginning the design, the systems engineering group determines the design goals by consulting the project management and the principle investigator or science team because the design goals may not be explicitly documented in the system requirements.  Design goals should be documented in the System-wide Design Decisions sections of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or equivalent system documentation.

The subactivities performed during this activity may vary widely between projects.  The software developer should participate in the following common subactivities.  The subactivities often are iteratively performed (e.g., scenarios may lead to identifying new interface details, and prototyping may reveal required changes in subsystem definitions) or in parallel; thus, the subactivities cannot be considered solely sequential.

Also, each subsystem may have its own SSDD or other equivalent system documentation.  Thus, the design efforts between subsystems must be coordinated.

1)  3.1.2.1 Identify Subsystems.  In this subactivity, the various subsystems (hardware and software) that make up the system are identified, and the system-level requirements are allocated to them.  Identifying the subsystems includes selecting hardware components (or determining the requirements for hardware to be developed) and allocating system requirements to software.  Also, software components may be selected from available commercial-off-the-shelf (COTS) projects or reused from previous projects.

2)  3.1.2.2 Define Interfaces Among Subsystems.  This subactivity defines the interfaces between subsystems (e.g., data lines between a controller unit and a sensor device) and further refines the overall external system interfaces.  In this step, the bus structures (e.g. MIL-STD-1553B) are selected.

3)  3.1.2.3 Generate Subsystem Operational Scenarios.  This subactivity defines the way the various events are handled by the various subsystems and the required functional interactions between them.

4)  3.1.2.4 Perform Prototyping.  This subactivity incorporates software prototyping to define requirements or to support proposed system/subsystem designs.

5)  3.1.2.5 Participate in System Design Inspection.  In this subactivity, the system design documentation is formally inspected and submitted to the project-level configuration management (CM) organization.

Outputs

The inspected system design documentation consisting of the identified and documented subsystem components, system requirements allocated to each subsystem, subsystem requirements and interface definitions, traceability matrices, data dictionary, and any other system documentation. This may take the form of a SSDD or equivalent systems design documentation.



�Identify Subsystems

Overview

In this activity, the individual subsystems making up the system are identified.  The system-level requirements are allocated to the various subsystems, and additional requirements are derived from them, based on the design decisions being made.  In some cases, the subsystem consists of one or more commercial or pre-existing products, while in other cases, all or part of the subsystem may have to be developed.

Roles and Responsibilities

The software developer, as a member of the systems engineering group, identifies the various subsystems and requirements, and the derived requirements allocated to each one.

Controls

See parent activity 3.1.2 Define System Design.

Inputs

The inspected system requirements documented in a MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system requirements documentation (see activity 3.1.1 Define System Requirements).

Subsystem interface descriptions defined (see activity 3.1.2.2 Define Interfaces Among Subsystems) in previous iterations.

Operational scenarios that discuss details of subsystem interactions (see activity 3.1.2.3 Generate Subsystem Operational Scenarios) developed in previous iterations.

Prototyping results (see activity 3.1.2.4 Perform Prototyping) that may indicate if a subsystem is adequate or feasible for system use (e.g., can the integrated motor controller assembly developed for a previous project be reused on the new system?).

The defect list generated during a formal inspection (see activity 3.1.2.5 Participate In System Design Inspection).

Procedures

When correcting defects found during a formal inspection, the systems engineering group ensures that any necessary changes are also incorporated in the system requirements (see activity 3.1.1 Define System Requirements).  The systems engineering group determines if correcting a subsystem definition affects the subsystem scenarios (see activity 3.1.2.3 Generate Subsystem Operational Scenarios), and the subsystem interfaces (see activity 3.1.2.2 Define Interfaces Among Subsystems). 

The following steps are iteratively performed.  At first, only the major subsystems are identified.  Some of these may be apparent from the system requirements (e.g., the flight subsystem, the ground subsystem).  It is important the developer keeps in mind that there may be subsystems required to support the mission that are not readily apparent from the requirements documentation (e.g., subsystems required for testing, data analysis).  These major subsystems are then iteratively broken down into lower-level subsystems as the operational scenarios and interface definitions are developed.  In turn, these subsystems may identify other subsystems.  Prototyping may be performed and the results evaluated as necessary to support design decisions (see activity 3.1.2.4 Perform Prototyping).

1)  Identify the major subsystems making up the system.  These subsystems are normally the instrument, the platform (e.g., pallet or launch vehicle), and the ground support.

The example, shown in Figure 3.1.2.1-1, is based upon a Light  Detection and Ranging (LIDAR) System and other similar systems developed in the Software Engineering and Analysis Laboratory (SEAL).
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Figure 3.1.2.1-1. Example of Major Subsystems

2)  Each subsystem is then broken down into its various major components as shown in Figure 3.1.2.1-2. 
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Figure 3.1.2.1-2 Example of Further Subsystem Decomposition

The systems engineering group carefully reviews documentation from previous similar experiments to identify potential reusable hardware and/or software components.  Commercial products that can be used are identified.  If the subsystems are not obvious, the group may simply divide each system into various objects or functional components to identify subsystems.

For space projects, the flight subsystem and three ground subsystems are normally required.

Flight Subsystems.  Consists of the platform and instrument(s).  Instruments’ subsystems include the various instrument components (e.g., lasers, cryo-coolers, heaters, cameras, motors) and the software to control them (e.g., process scientific data, evaluate instrument status, perform safety limit checking, control motors, monitor sensors).  In the example (Figure 3.1.2.1-2), this was broken down as follows:

Example:

LIDAR Instrument

Laser.  The laser emits short pulses of laser light down to the atmosphere.

Instrument Controller (IC).  The IC handles all uplinked data, processes all commands and commands and controls the laser.

Receiver Assembly (RA).  The RA detects the portion of laser light scattered back to the instrument by the atmosphere.

Experimental Platform.  The LIDAR Instrument is mounted on a support platform attached by struts to the Spacelab pallet.  The support platform for the instrument subsystems is designed to be immune to thermal deformations which could affect optical alignment. 

Ground support subsystems.  Normally, this is the simulation hardware and software (which simulates hardware or other external interfaces) that test and validate the flight software or hardware, and associated interfaces and data.  This cannot be defined until the flight subsystems have been defined.  Software may be written to test every hardware interface, so there may be as many simulators as interfaces.  Hardware also may simulate various aspects of the environment (e.g., light, heat, vibration). 

Mission operations subsystems.  The mission operations subsystems command the spacecraft and instrument (e.g., control the power, attitude, heat, fault detection, and instrument functions), monitor all flight subsystems, manage the data recorders, and receive the data.  The hardware is normally pre-existing (e.g., the receiving and tracking station hardware).

Post-mission data analysis subsystems.  This software analyzes the mission science data. This involves suitably formatting data for the science personnel. Normally, the science team asks for additional analyses, based on the initial format and analysis results.  Consequently, this may be iterated several times, and involve developing additional software.  This cannot be defined until the flight and mission operations subsystems are defined to understand the actual data formats that will be used.

The software developer confirms that the software functionality of each category is defined and understood before software development begins on those subsystems. 

3)  Each subsystem is decomposed to a level where the systems engineering group feels comfortable that its functionality is clearly defined, and that the components are available (commercially or reusable from a past project) or are defined well enough to begin development.  Additional lower-level subsystems may be identified as shown in Figure 3.1.2.1-3.
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Figure 3.1.2.1-3 Example of a Lower Level Subsystem Decomposition of the LIDAR Instrument 



Data Digital Handling Unit (DDHU).  The DDHU controls the analog to digital converter hardware, generates all clock pulses, digitizes and averages the science channels’ analog data, receives commands (e.g., Digitizer_On, raw signal selection) and status (i.e., Instrument Status Data Block (ISDB) data) from the IC, and formats and transmits the telemetry data stream (i.e., science data and ISDB).

Boresight Assembly (BA).  The BA, a two-axis, motor-driven prism, aligns the laser beam to the telescope field-of-view so that both point to the same column of atmosphere.  It receives commands from and transmits data to the IC.

Laser Transmitter Module (LTM).  The LTM consists of two lasers.  Each laser simultaneously emits at the three, harmonically-related wavelengths of 1064 nm (infrared), 532 nm (visible green), and 355 nm (ultraviolet). The two-laser system provides redundancy in case one laser fails.  Only one laser operates at a time.

Instrument Controller (IC).  The IC handles all user commands, command parameters, and uplinked software.  All subsystems are commanded and controlled via the IC.  Instrument health and status are monitored and recorded in the ISDB.  The ISDB is transferred to the DDHU which transmits it as part of the telemetry data stream.  The IC handles all out-of-safe-limit conditions (e.g., when limits are exceeded, it may automatically halt operations, and go to a “safe” (i.e., standby) mode).

Receiver Assembly (RA).  The RA includes a one meter telescope and an aft-optics package.  The telescope collects laser light scattered from the atmosphere, and focuses it in the aft optics.  The aft optics include wavelength selective optics to separate the return signal into its three color components.  The IC commands it to collect the laser light and it returns the laser light data to the IC.  The assembly includes the light sensors.

4)  Once the system is decomposed into its various subsystems, and these are decomposed into various well-defined components, the systems engineering group identifies any other subsystems or components necessary to use, develop, or test the system.  These can include: ground support software to support testing, post-mission software or hardware to analyze the data received, special hardware tools required for system integration, and any support equipment.  Special adaptations or equipment to support external interface testing (e.g., the spacecraft bus) are noted.

5)  Each hardware and software subsystem and component is carefully described in the System Components section of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system design documentation.  If the component is commercial or being reused from another project, the product documentation is obtained and referenced.  System requirements are reviewed and allocated to the various subsystems.  The systems engineering group verifies that the components selected or planned will work together and meet all system requirements without violating any system or subsystem constraints (e.g., power and weight limitations).

6)  A traceability matrix should be developed mapping the system requirements to the subsystems to which they have been allocated.  The system requirements should be grouped in terms of system components, showing traceability between the system requirements and the various system components.  This should be placed in the Requirements Traceability section of the SSDD or other equivalent system documentation.

7)  The software developer reviews all system design documentation and verifies that the subsystems requiring software support are identified and described in sufficient detail to proceed with software development (see activity 3.2 Perform Software Development).

Outputs

The definition of each subsystem documented in the System Components section, and the allocated system requirements it fulfills as identified via a trace matrix in the Requirement Traceability section of the SSDD or equivalent system documentation.  In some cases, requirements will be satisfied by selecting a commercial product, while in others, it may involve documenting in-depth requirements specifications for products that must be developed.

�Define Interfaces Among Subsystems

Overview

In activity 3.1.1.2 Define System Interfaces, the system interfaces are broadly defined.  However, in this activity, these interfaces, as well as the subsystem-to-subsystem interfaces, are defined in more detail.  The purpose of this activity is to gain an understanding of the flow of information throughout the system.  This enables the systems engineering group to document the data and commands being passed, the data formats, and other interface detail in very specific terms in the Interface Design section of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or equivalent system documentation.

Roles and Responsibilities

The software developer, as a member of the systems engineering group, determines the appropriate subsystem interfaces, and the flow of commands and data.

Controls

The method of portraying command and data flow parameters will be determined by the selection and availability of system engineering tools, and the system design methodology selected by the systems engineering group.

Inputs

The inspected system requirements documented in a MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or equivalent system requirements documentation (see activity 3.1.1 Define System Requirements).

The subsystem definitions and allocated system requirements (see activity 3.1.2.1 Identify Subsystems).

Operational scenarios (developed in activity  3.1.2.3 Generate Subsystem Operational Scenarios) that discuss required subsystem actions with other subsystems.

Prototyping results (performed in activity 3.1.2.4 Perform Prototyping) that may indicate if a subsystem is adequate or feasible for use in the system (e.g., a new board).

The defect list generated during a formal inspection  (see activity 3.1.2.5 Participate in the System Design Inspection). 

Procedures

There are many detailed methodologies for modeling interfaces in a system, and the following steps have been selected for this Guidebook.  These steps are iteratively performed as interface information becomes available.

Throughout this activity, the data dictionary is reviewed and updated as interfaces are identified and defined.  The data dictionary contains each input and output for each subsystem.

If a defect, found during a formal inspection and documented on a defect list, is being corrected, each step is reviewed to verify that no additional changes are needed.

1)  For each subsystem, the systems engineering group first identifies all input sources, such as human users, environment (e.g., the backscatter signal from the atmosphere as shown in Figure 3.1.1.2-2), or other interfacing systems (see activity 3.1.1.2. Define System Interfaces) or subsystems (see activity 3.1.2.1 Identify Subsystems).  Scenarios (see activity 3.1.2.3 Generate Subsystem Operational Scenarios) may identify the appropriate inputs sources.

In Table 3.1.2.2-1, inputs to the Instrument Controller (IC) are initially identified (see Figure 3.1.2.1-3 and accompanying text in activity 3.1.2.1 Identify Subsystems for definitions of the IC and most of these inputs). 

Table 3.1.2.2-1  Example IC Inputs

Input�Source of Input��Boresight Assembly (BA) status�Receiver Assembly (RA)��Laser Energies and Data�Laser Transmitter Module (LTM)��Boresight Status�BA��Global Positioning Data�Pallet��Commands�Pallet��

2)  The input from these sources is specifically determined in terms of data type (e.g., Boolean, 16-bit 2s complement), units (e.g., watts, rad/sec, volts), range limits (e.g., m to n), accuracy (e.g.,  (5%), precision (e.g., number of significant digits), size (e.g., in bytes, words).  Each input and complete description are assigned an identifier and entered into the data dictionary.  The System External Interface Requirements section of the SSS may be referenced for information.  Subsystem interfaces must be determined by the systems engineering group based on the subsystem descriptions and allocated system requirements (see activity 3.1.2.1 Identify Subsystems).

Each command and, if applicable, the command code (i.e., the bit patterns uplinked/transmitted corresponding to the actions to be taken for each command name) are identified.  See example in Table 3.1.2.2-3. 

3)  The systems engineering group also identifies all destinations for the subsystems’ output. These destinations can include: 1) an external system; or 2) object (e.g., the ground station receiving the instrument and science data) which are documented in the System External Interface Requirements section of the SSS; or 3) another subsystem (see activity 3.1.2.1 Identify Subsystem) (e.g., the BA, Digital Data Handling Unit (DDHU) as shown in Figure 3.1.2.1-3).  Scenarios (see activity 3.1.2.3 Generate Subsystem Operational Scenarios) may be used to identify the appropriate destinations.

IC outputs (see Figure 3.1.2.1-3 and accompanying text in activity 3.1.2.1 Identify Subsystems) are initially defined in Table 3.1.2.2-2.



�Table 3.1.2.2-2  Example of Instrument Controller Outputs

Output�Destination��Receiver Assembly (RA) Commands�RA��Laser Commands�Laser Transmitter Module (LTM)��Boresight Commands�BA��DDHU Commands�DDHU��Instrument Status�DDHU��

4)  The format of each subsystem’s output is specified in terms of data type (e.g., Boolean, 16 bit 2s complement), units (e.g., watts, rad/sec, volts), range limits (e.g., m to n), accuracy (e.g., within (5%), precision (e.g., number of significant digits), size (e.g., in bytes, words).  Each output is assigned an identifier and entered into the data dictionary with a complete description.  The System External Interface Requirements section of the SSS may be referenced for information.  However, the SSS information may not be stated in this level of detail, and thus referencing this section may not be useful.

The following commands used to control the LTM (commands are shown in Table 3.1.2.2-3 and LTM is defined in the example in activity 3.1.2.1 Identify Subsystems) go to the IC from the Ground Station.  Select_Laser commands select which laser to use.  On/Off commands switch the laser and flashlamps to the On position.  Other commands set various laser parameters (e.g., coolant flow limits, air temperature limits).

Table 3.1.2.2-3  LTM Commands

Command Name�Command Code (Hex)��Select_Laser_A�00��Select_Laser_B�01��Switch_On�02��Switch_Off�03��Flashlamps_On�04��Flashlamps_Off�05��Set_Pump_Outlet_Coolant_Flow_Limit�06��Set_Air_Heat_Inlet_Air_Temperature_Limit�07��Set_Oscillator_Capacitor_Temperature_Limit�08��Set_Outlet_Coolant_Temperature_Limit�09��Set_Amplifier_1_Capacitor_Temperature_Limit�0A��Set_Amplifier_2_1_Capacitor_Temperature_Limit�0B��Set_Amplifier_2_2_Capacitor_Temperature_Limit�0C��Set_Coolant_Differential_Pressure_Limit�0D��Set_Canister_Pressure_P1_Limit�0E��Set_Canister_Pressure_P2_Limit�0F��

5)  The systems engineering group looks at the amount of data being sent throughout the system and the required rate to determine the appropriate interface type (e.g., a RS422 bus is capable of higher bandwidth than a MIL-STD-1553B bus), and the required bandwidth.  Documentation and software from past projects can be examined to determine appropriate interfaces and reuse possibilities.  If similar components were used on past projects, the interface documentation is reviewed because the interfaces may be similar.

Example:

If a MIL-STD-1553B bus is selected and software was developed for this bus using a United Technologies Microelectronic Control chip in another project, the use of the chip should be seriously considered, thus, enabling software reuse.

Diagrams such as Figure 3.1.2.2-1 may be produced to help visualize the system.  This diagram shows the type of interface used to uplink and downlink information between the spacecraft and the ground support software (GSS).  Figure 3.1.2.2-1 also shows that the science/instrument data is downlinked over the Sband, processed by the GSS, displayed, and stored.  Commands are uplinked over the Sband.  The science/instrument data displays and command file generator are linked to a data storage device via a RS422 bus.

�

Figure 3.1.2.2-1 Example of Spacecraft to Ground Interface

The systems engineering group looks at each proposed interface to determine if the subsystem described can handle the required amount of information under the expected maximum load (e.g., the maximum data amount that may be received/transmitted in a given time, the maximum data amount that can be processed and/or stored, the processor speed) to determine potential bottlenecks.  Prototyping can simulate these maximum loads and test the interfaces (see activity 3.1.2.4 Perform Prototyping).  Examining the hardware documentation (e.g.,  MIL-STD-1553B Aircraft Internal Time Division Command/Response Multiplex Data Bus) may determine the maximum loads for commercial products (e.g., a SCSI I/O bus has a maximum bus length of 25m and can support synchronous or asynchronous clocking, while an IPI I/O bus can support only asynchronous clocking but has a maximum bus length of 50m).  If the subsystem cannot  handle the maximum expected load, it can be redefined (see activity 3.1.2.1 Identify Subsystems) or the hardware/software interfaces can be modified.  Diagrams showing the appropriate bus structures, clock pulses, and interrupts are prepared.

An example diagram showing the bus structures, clock pulses, interrupts, and processors of the LIDAR Instrument (see activity 3.1.2.1 Identify Subsystems) is shown in Figure 3.1.2.2-2.

�



Figure 3.1.2.2-2  Example of a Subsystem Interface Diagram Showing Bus Structures, Clock Pulses, Interrupts, and Processors 

6)  The systems engineering group begins determining and describing the higher level subsystem interfaces and works its way down to the individual component interfaces.  Diagrams are produced showing the commands and data flow between the various subsystems.  An informal diagram showing the commands and data flow between the LIDAR Instrument subsystems (see an example in activity 3.1.2.1 Identify Subsystems) is shown in Figure 3.1.2.2-3.  A sample formal object interaction diagram (OID) (as defined in Colbert’s Object-Oriented Software Development (OOSD) method [Colbert, 1993] see Attachment II) as shown in Figure 3.1.2.2-4 depicts the same interfaces. 

The systems engineering group performs level checking to verify that all inputs and outputs in high-level designs also appear on the lower-level designs.  This may be done by hand or automatically depending on the tools used.

7)  The subsystem interface descriptions are then documented in the Interface Design section of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E).
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Figure 3.1.2.2-3  Example of Data and Command Flow Between Subsystems 
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Figure 3.1.2.2-4  Example of an Object Interaction Diagram (OID)



Outputs

The subsystem interface descriptions consisting of the diagrams, tables, and data dictionary descriptions documenting information flows, and the format of all commands and data for each system component placed in the Interface Design section of the SSDD or equivalent system design documentation.

�Generate Subsystem Operational Scenarios

Overview

This activity is very similar to activity 3.1.1.3 Develop Operational Scenarios, except more detail is included in each scenario to show each subsystem’s behavior and functionality.

Roles and Responsibilities

The software developer, as a member of the systems engineering group, principal investigator, and potential users, develops the operational scenarios.  During this activity, the following roles are assigned to system engineering group members:

The recorder documents all scenarios, updates the data dictionary, and records issues and other information discussed in the scenario meetings.

The domain experts (e.g., the principal investigator, potential users, and other individuals with a detailed knowledge of how the system should perform, and who can make decisions on the system performance) describe the system operation.

The coach leading the session has experience developing scenarios.

Controls

The selected method of developing and documenting scenarios.  This will vary between projects, and is determined by the selection and availability of system engineering tools.

Inputs

The subsystem definitions and allocated system requirements (see activity 3.1.2.1 Identify Subsystems) documented in the System Components section of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation.

Subsystem interface descriptions (see activity 3.1.2.2 Define Interfaces Among Subsystems) developed and documented in the Internal Interfaces section of the SSDD.

The inspected system requirements documented in the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation containing the system requirements, interface definitions, and previously developed high-level scenarios (see activity 3.1.1 Define System Requirements).

Prototyping results that help in understanding the interfaces (see activity 3.1.2.4 Perform Prototyping).

Defects found during a formal inspection and documented on a defect list (see activity 3.1.2.5 Participate in the System Design Inspection).

�Procedures

This activity is very similar to activity 3.1.1.3 Develop Operational Scenarios, except the scenarios in these steps are developed at a much lower level.  The group members should review activity 3.1.1.3 Develop Operational Scenarios before beginning this activity.

This activity is iteratively performed where more and more detail is added as the scenarios become better defined.  As scenarios for one subsystem are developed, it may be necessary to review and update the scenarios for other interfacing subsystems.  Prototyping results may be used to gain an understanding of expected subsystem operations and interfaces (see activity 3.1.2.4 Perform Prototyping).

Throughout this activity, the recorder keeps the data dictionary and the interface definitions updated with the information being gathered.  Consistent terminology and precise definitions are extremely important because these scenarios determine some subsystem requirements.

If a defect, found during a formal inspection and documented on a defect list, is being corrected, each step is reviewed to verify that no additional changes are needed.

1)  The team members are identified as they are in activity 3.1.1.3 Develop Operational Scenarios.  In this activity, the domain experts (e.g., laser experts, cryo-cooler experts, motor controller experts, and any individuals with a detailed knowledge of how the system should perform and who can make decisions on the system performance) are familiar with the overall system requirements, as well as the individual subsystems being discussed.  The domain experts have experience with similar projects and can make sound technical decisions.

2) For each subsystem, perform the following substeps:

A)  Identify all external interfaces of the subsystem being considered that directly originate an event (i.e., the information exchange between the system and an outside agent).  For subsystems with external interfaces (e.g., receive commands, measure/monitor the environment) the scenarios developed earlier (see activity 3.1.1.3 Develop Operational Scenarios) and documented in the system requirements are broken down into more detail.

The team reviews available subsystem interface descriptions to determine the sources of events from other interfacing subsystems.  Interfaces that only receive outputs from the subsystem and cannot generate inputs do not originate events.  Thus, these interfaces are a subset of those identified in activity 3.1.2.2 Define Interfaces Among Subsystems.  The recorder maintains a list of sources originating events that are identified by the team.

Example:

Possible sources include:

All external sources identified in activity 3.1.1.3 Develop Operational Scenarios.

Another subsystem that issues requests.

Another subsystem that issues reports.

B) For each event source identified in substep A, identify all events providing external stimulation to the subsystem.  The recorder documents each of these events.

Example:

Possible external events are:

External events identified in activity 3.1.1.3 Develop Operational Scenarios.

A request for data from another subsystem.

A failure report from another subsystem.

A hardware failure by another subsystem.

C) For each external event identified in substep B, determine the effect events and document the scenarios as discussed in activity 3.1.1.3 Develop Operational Scenarios.

Example:

Scenario (continuation of the example scenario from activity 3.1.1.3 Develop Operational Scenarios focusing on the actions of the Instrument Controller (IC), defined in activity 3.1.2.1 Identify Subsystems):

External Event:  The IC receives a Go_To_Standby Command.

Effect Events:

The IC  sets the Built_In_Test_System (BITS) power discrete to zero.

The IC updates the Data Take Mode bits of the Discrete Input Low word to indicate Standby.

The IC issues the Standby Configuration Command Sequence to the Aft-Optics subsystem to place the Aft-Optics Electronics in a protected configuration.

The IC reads the Greenwich Mean Time (GMT), instrument time, and resolution counter and places the values in the Instrument Status Data Block.

The IC issues the Switch_Off command to the Laser Transmitter Module (LTM) to turn the switch off on the selected laser.

The IC issues the Flashlamp_Off command to the LTM to turn the flashlamps off on the selected laser.

The IC issues the command to stop the camera from taking pictures.

At 5 seconds after reading the GMT, the IC issues the command to the Digital Data Handling Unit (DDHU) to cease transmission of new High Rate Science Data.

The system mode parameter is changed to Standby.

�In Coat’s user-oriented requirements method [Coats, 1994, p. 5], this scenario would be shown graphically as Figure 3.1.2.3-1:
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Figure 3.1.2.3-1  Example of IC External Event and Effect Events Scenario

D)  Each possible subsystem input (see activity 3.1.2.2 Define Interfaces Among Subsystems) is checked against the external events covered in substep B.  Events or possible inputs not covered previously may indicate missing scenarios to be developed.

Each possible subsystem output (see activity 3.1.2.2 Define Interfaces Among Subsystems) is checked against the scenarios to determine if a scenario was developed that produces that output in an effect event.  Outputs not covered indicate missing scenarios that should be developed or an unnecessary output.

By developing scenarios covering all possible inputs and outputs to each subsystem, the behavior (e.g., transformation of information, error recovery) of each subsystem should be clearly defined.

The group also looks for any scenarios ending in situations where no other scenario can be started, or begin with an input from another subsystem not covered by another scenario.  These indicate a scenario is missing.

3)  The system and allocated subsystem requirements are traced to the scenarios.  A traceability matrix is produced and incorporated into the system design documentation.

4)  The completed scenarios and traceability matrix are placed in the System/Segment Behavioral Design section of the SSDD or equivalent system design documentation. 

Outputs

The set of detailed operational scenarios showing the interworkings of the subsystems are in the System/Segment Behavioral Design section of the SSDD or equivalent system design documentation.



�Perform Prototyping

Overview

The software developer often is called upon to perform software prototyping to support systems engineering (or later software engineering efforts).  Software prototyping reduces risk through exploring ill-defined or unknown requirements and determining the feasibility of proposed requirements or design considerations.  Prototyping can help determine which one of multiple subsystems is better equipped to handle a task, given imposed design constraints.  Consequently, this reduces the risk of overloading one of the subsystems.  The scope and nature of the prototype(s) to be produced vary widely, as does the formality of the development process.  This activity describes the factors prompting questions and issues to be resolved about the nature of prototyping, and guidance for its use.  It also establishes guidelines for prototyping versus formal product development.

Roles and Responsibilities

The software developer develops the software prototypes and records the results.

The systems engineering group defines the need for prototyping and evaluating the results.

Controls

The Prototype Proposal Form (see Appendix C).

Inputs

Subsystem definitions and allocated system requirements developed (see activity 3.1.2.1 Identify Subsystems) and documented in the System Components section of the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation.

Any subsystem interface descriptions (see activity 3.1.2.2 Define Interfaces Among Subsystems) developed and documented in the Internal Interfaces section of the SSDD.

Any subsystem operational scenarios (see activity 3.1.2.3 Generate Subsystem Operational Scenarios) developed and documented in the System/Segment Behavioral Design section of the SSDD that may be implemented or simulated in the prototype.

Procedures

1)  Before prototyping commences, the systems engineering group (or individual members) establishes and clearly states the prototyping goals.  The broad goal is to reduce cost, schedule, or technical risk.  More specifically, prototyping often meets one or more of the following goals:

Obtain information on the “look and feel” of user interfaces, including what information needs to be displayed and how.  This may be iteratively done by providing potential users with a prototype, receiving their feedback, and updating the prototype until the users indicate they are satisfied with the proposed interfaces.

Example:

Define Graphical User Interface (GUI):  Produce a preliminary GUI for evaluation by potential users to further define user interface requirements.

Determine the users’ preferred colors and required level of precision for the contour maps.

Test or demonstrate control of a hardware component, and define its interface requirements.

Example:

Verify the documented interface requirements for an Interactive Stepper Motor Controller.

Determine the impact of using a faster clock and/or inserting a wait state on the timing design.

Test or demonstrate interaction with an external software package(s) or component(s), and define its interface requirements.

Example:

Verify the documented interfaces and capabilities of the Intel 8250 Universal Asynchronous Receiver/Transmitter (UART) reusable software component.

Determine the data formatting required to import the signal data into the proposed commercial pattern matching software package.

Establish algorithm, system (or software) design, or throughput viability.

Example:

Data compression:  Determine if an interface can transfer the required amount of data given the candidate data compression scheme.

Timing Issues:  How much data can be sent during X amount of time before the receiving system is going to read the data?

2)  Establish constraints and plan the prototyping.  After the goals are established, the major prototyping constraints are determined.  The constraints include the language, hardware and software environment to be used, and the products to be developed.  Normally, the functions implemented will be only a small subset of the total required system functions.  Special tools, such as code generators, may be used to speed up the prototyping.  Coding and documentation standards may be relaxed during this effort if it is clear that the prototype products will not be used in the final product.  End products of prototyping may be algorithmic analyses, feasibility studies of alternative system designs, interface requirements definition, and concepts of user operation.  The software can be a product itself, and reused in the final software product.

Example:

Software interface drivers developed during prototyping to better understand how to control a hardware interface may be reused in the final software.  However, the primary reason for producing software during prototyping is to obtain additional information about the end products.

If a prototype is expected to result in software that will be in the final product, it should be developed with all usual requirements analysis, design, coding, test documentation, standards, management planning, and configuration and quality control measures enforced.  The need for these measures must be communicated to all group members because the lack of this documentation and control may result in higher costs during system integration and maintenance, and an increased number of defects in the product.

Prototyping should be a limited effort, usually no longer than one staff-month.  It should be incorporated and tracked as any other element in the schedule as defined in the MIL-STD-498 Software Development Plan (SDP) (see Appendix E) (see activity 1.1.1 Plan Software Development).

Once the prototype goal, development environment, products to be produced, labor estimate, and expected completion date are documented on a Prototype Proposal Form, the form is submitted to the project software manager (if the prototyping is for software development) or the project manager (if the prototyping is for an overall system effort) for approval.

3)  Based upon the defined prototyping goals and constraints, the software developer performs the actual prototyping.  During this effort, the software developer may reference any system or subsystem definitions and interface descriptions, operational scenarios, code or documentation from past projects, or technical documentation on system products (e.g., MIL-STD-1553B, Intel processor documentation).

4)  The software developer documents the results on the Prototype Proposal Form  and reports to the systems engineering group.  The systems engineering group decides if the prototyping results met the goals, or if further iterations or a different approach is needed.  The prototyping is often accomplished in increments.  This is especially true for efforts whose goal is to eliminate usage requirements by obtaining periodic user feedback on prototyping results.  The content of successive increments may be determined from the previous feedback.  If the goals are met, the results (e.g., a successful interface with a new hardware component) can be used in developing and refining system products (e.g., interface requirements definition for the new hardware component).

Outputs

Prototyping results (“result” may indicate a usable software system, numerical quantity, interface definition, algorithm, or what is desired based upon the goals) documented on the Prototyping Proposal Form and placed in the systems engineering notebook.

�Participate in the System Design Inspection

Overview

Formally inspecting the system design documentation is a means of finding and eliminating defects in the current version of the MIL-STD 498 System/Subsystem Design Description (SSDD) (see Appendix E) or equivalent system documentation.  The formal inspection process is documented in the Instructional Handbook for Formal Inspections.  In this activity, a formal inspection on the system design documentation is performed.

Roles and Responsibilities

The project manager assigns individuals to the inspection team, which should consist of members from each discipline (e.g., hardware, software, optics).

The inspection team conducts the formal inspection.

Controls

The Instructional Handbook for Formal Inspections documenting the formal inspection process.

Inputs

The SSDD or other equivalent system design documentation.  This includes: the subsystem definitions and requirements (see activity 3.1.2.1 Identify Subsystems), subsystem interfaces (see activity 3.1.2.2 Define Interfaces Among Subsystems), operational scenarios (see activity 3.1.2.3 Generate Subsystem Operational Scenarios), data dictionary, and the trace matrix mapping the scenarios to the system/subsystem requirements.

Procedures

The SSDD should meet all inspection entrance criteria.  A spell check should be done on the documentation, and level checking should be done if a computer-aided software engineering (CASE) tool was used.  This material may vary depending on the project, but should include all subsystem descriptions and allocated requirements, documentation describing the information flows between subsystems, subsystem operational scenarios, the trace matrix mapping scenarios to system and subsystem requirements, and the trace matrix mapping system requirements to subsystems.

1)  The project manager should select the individuals who will take part in formally inspecting the system design.  Selecting the inspection team is discussed in the Planning Stage section of the Instructional Handbook for Formal Inspections (also see Appendix E of the handbook for a list of expected participants for each inspection type).

2)  The formal inspection is conducted as documented in the Instructional Handbook for Formal Inspections.  In addition to the items on the “Functional Design Checklist” in the Instructional Handbook for Formal Inspections, the following items must be verified:

Are all subsystems decomposed to a level where their functionality is well defined?

Are all requirements allocated to the subsystems verifiable?

Have all subsystems or components necessary to operate, develop, process post mission data, and test the system been defined?

Have all inputs and their sources been identified for each subsystem?

Have all outputs and their destinations been identified for each subsystem?

Have all input and outputs for each subsystem been documented in the data dictionary?

Have the bus, amount of data to be sent, and required rate of throughput for all subsystem interfaces been identified and documented?

Have scenarios been developed covering all possible commands for each subsystem?

Do any scenarios end in situations where no other scenario can be started?

Does any scenario begin with an input from another subsystem that is not produced in another scenario?

Is the terminology consistent throughout the design documentation?

Do scenarios cover all normal and error situations that can occur?

3)  All errors found during the formal inspection should be documented on a defect list and tracked until closure.  The system design documentation is then corrected and, if necessary, re-inspected.  Once all errors are corrected, the system design documentation is said to be “inspection certified”, and is submitted to the project-level software configuration management (CM) organization for control.

Outputs

The inspected system design may take the form of an SSDD or equivalent system design documentation, and be submitted to the project-level CM organization.

The defect list documenting the defects found during the formal inspection.
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