PERFORM SOFTWARE DEVELOPMENT
Overview
This activity describes developing software products (i.e., code and software documentation). This activity covers the entire software development life cycle, from software requirements analysis to software qualification testing, and is based on the outline and Data Item Descriptions (DID) provided by MIL-STD-498.
Roles and Responsibilities
The software engineering group develops the software and may participate in software qualification testing. This includes software requirements analysis, preliminary and detailed design, software coding, and unit and integration tests.
Controls
MIL-STD-498 for Software Development and Documentation, which establishes uniform requirements for software development and documentation. The MIL-STD-498 DIDs are in Appendix E of this Guidebook.
The Software Configuration Management Plan (SCMP) (see Appendix E), which determines where the software products are placed and the method for changing and controlling them.
The MIL-STD-498 Software Development Plan (SDP) and Software Test Plan (STP) (see Appendix E), which document what whichactivities are performed, the performance order (i.e., the software development life cycle), and the software engineering environment and software test environment used during the project.
Inputs
Prototyping/lessons learned that may provide a better understanding of the requirements and/or design (see activities 3.1.2.4 Perform Prototyping and 4.1.2 Identify Lessons Learned).
Pre-existing software products that may be reused or modified during software development (see activity 4.2 Maintain The Organization’s Assets).
Approved Software Change Requests (SCR) and Deviations/Waivers that document needed changes to the software products (see activity 2.2.6 Hold SCB Meeting).
The inspected system design, which includes subsystem definitions, interfaces, and related material that documents the system-level requirements allocated to the software and may provide a general description of the software’s required functionality and interfaces. This may take the form of a MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation (see activity 3.1.2 Define System Design).
The inspected system requirements that may take the form of a MIL-STD-498 System/ Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation (see activity 3.1.1 Define System Requirements).
�Procedures
At any point during software development, SCRs may be received which may force the software engineering group to iterate previously completed activities. The process for requesting a change to software products is documented in the Configuration Control section of the project’s SCMP.
Throughout software development, the software engineering group should be alert for pre-existing software products from previous projects, commercial sources, or prior work on the same project that may be reused. Reusable products include not only code. Theybut also could include documentation, such as test cases, designs, and requirements. . The overall plan for incorporating and/or developing reusable software products is documented in the Reusable Software Products section of the SDP. The results and lessons learned from prototyping can be used throughout software development to better understand the requirements or verify the feasibility of a design approach.
The Plans for Performing Detailed Software Development Activities section of the SDP documents the approach (i.e., methods, procedures, tools) to perform software development, the way in which the results are recorded, and the preparation of the deliverable items. The standards for producing software products are in the Standards for Software Products section of the SDP. The overall directory structure for the software project and the SCM tools used are described in the Configuration Identification section and Tools section of the SCMP. The tailored STP outlines details of the software test environment, defines the test organization, maps the software requirements to the test organization to ensure test plan completeness, and determines the test schedule.
The following subactivities are not necessarilyy sequentially performed. However, the exact order of the activities is specified in the Schedules and Activity Network section and the Software Development Process section of the SDP. Depending on the nature of the software, subactivities 3.2.5 Unit Integration and Testing and 3.2.6 CSCI Qualification Testing may involve integration with some hardware components;, however, this should be for testing only. Formally integrating the hardware and software is described in activity 3.3 Participate in System Integration and System Qualification Testing.
1) 3.2.1 CSCI Software Requirements Analysis. The software engineering group derives detailed software requirements from system requirements allocated to software (i.e., system requirements to be met by the system’s software components). The system requirements allocated to software are documented in the SSS and the system design is documented in the SSDD or other equivalent system documentation.
2) 3.2.2 CSCI Architectural Design. In this subactivity, the software developers determine the high-level software architecture, capturing external interfaces that satisfyies the software requirements and constraints defined in subactivity 3.2.1 CSCI Software Requirements Analysis. This top-level architecture is the basis for the detailed design and interface definition of a modular computer software configuration item (CSCI).
3) 3.2.3 Develop Detailed Design. In this subactivity, the software developers design the detailed descriptions of how each computer software unit accomplishes some portion of the software requirements. Each unit's function, inputs, outputs, and constraints (e.g., memory size andor response time) are defined.
4) 3.2.4 Software Implementation And Unit Testing. In this subactivity, software compilation units are implemented and individually tested by the software developers. Some pieces of the hardware (e.g., individual boards), as well as hardware simulators, etc..) may be used to test the code units.
5) 3.2.5 Unit Integration And Testing. In this subactivity, the software units making up the Computer Software Configuration Item (CSCI) are integrated and tested by the software developers. The result is a CSCI that matches its software design and allocated requirements.
6) 3.2.6 CSCI Qualification Testing. CSCI qualification testing, performed by the software testers, validates that a CSCI meets the allocatedthose requirements that have been allocated to it. CSCI qualification testing also may be used to demonstrate to an outside acquirer or integrator that the CSCI is acceptable (i.e., meets requirements), and is sometimes referred to as “software acceptance testing.”
Outputs
The qualified software that passed software qualification testing, and is ready for formal integration with other CSCIs or hardware configuration items (HWCIs).
�CSCI Software Requirements Analysis
Overview
This activity derives detailed software requirements from the system requirements allocated to software (i.e., system requirements to be met by the system’s software components). The activity results are documented in a MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E).
Roles and Responsibilities
The software engineering group analyzes and derives system-level requirements and records them in the SRS.
Controls
See parent activity 3.2. Perform Software Development.
Inputs
The inspected system design, which may take the form of a MIL-STD 498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation, determines what system requirements are allocated to the computer software configuration item (CSCI) and how the CSCI interfaces with other systems (see activity 3.1.2 Define System Design).
The inspected system requirements, which may take the form of a MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation, contain the overall system requirements, and document how the system interacts with the users and/or other external components (see activity 3.1.1 Define System Requirements).
Pre-existing software products from past projects or previous versions that can be reused during the software requirements analysis (see activity 4.2 Maintain The Organization’s Assets).
Procedures
The SSDD describes the system or subsystem organization, allocating system requirements (documented in the SSS) to each Hardware Configuration Item (HWCI) and CSCI. From the SSDD, the software developer derives the SRS, which specifies the CSCI’s detailed requirements. The SRS becomes the basis for the CSCI’s design and qualification testing.
The software requirements produced by this activity must satisfy the customer’s and end user’s needs. The SRS must be clear, consistent, verifiable, complete, and traceable to system requirements; otherwise, it is inadequate for design activities. Formal inspections ensure clarity and consistency, identification of qualification methods ensures verifiability, and development of a traceability matrix ensures completeness and traceability. This activity comprises the following five subactivities: 3.2.1.1 Perform Software Requirements Definition, 3.2.1.2 Develop Software Requirements Traceability Matrix, 3.2.1.3 Verify Software Requirements, 3.2.1.4 Document Software Requirements, and 3.2.1.5 Participate In Formal Inspection For Software Requirements Specification. Subactivities 3.2.1.1 Perform Software Requirements Definition, 3.2.1.2 Develop Software Requirements Traceability Matrix, 3.2.1.3 Verify Software Requirements, and 3.2.1.4 Document Software Requirements can be done sequentially or concurrently. Subactivity 3.2.1.5 Participate In Formal Inspection For Software Requirements Specification is conducted after the other four subactivities are successfully completed. The following paragraphs describe the subactivities making up the requirements analysis process:
1) 3.2.1.1 Perform Software Requirements Definition. The software developer analyzes the allocated system requirements (documented in the SSS and SSDD) to determine the detailed software requirements for the CSCI. These software requirements clearly and precisely indicate what is to be done. The software developer identifies high-risk areas, addresses reuse of pre-existing software products from past projects or previous versions of the current project, and carefully defines external interfaces. There are many requirements analysis methods (e.g., object-oriented, formal specifications, algebraic specifications, structured), but this subactivity emphasizes object-oriented methods.
2) 3.2.1.2 Develop Software Requirements Traceability Matrix. In this subactivity, the software developer verifies the completeness of the allocation of system requirements to software requirements, ensuring that the allocated system requirements are addressed in the SRS.
3) 3.2.1.3 Verify Software Requirements. In this subactivity, the software testing staff, who is responsible for CSCI testing, analyzes each software requirement to ensure it is verifiable by demonstration, test, analysis, or inspection.
4) 3.2.1.4 Document Software Requirements. In this subactivity, the software developer completes the SRS using the SRS Data Item Description (DID) as a template (see Appendix E).
5) 3.2.1.5 Participate In Formal Inspection For Software Requirements Specification. In this subactivity, the SRS is formally inspected.
Outputs
The SRS that is completed and inspected.
�Perform Software Requirements Definition
Overview
In this activity, the software requirements for the computer software configuration item (CSCI) are determined. The software developer analyzes the allocated system requirements as listed in the MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E) or other equivalent system documentation to determine their accuracy and completeness, and then derives the detailed software requirements, identifies high-risk areas, and defines external interfaces.
Roles and Responsibilities
The software developers define the software requirements. These individuals must be familiar with the requirements analysis methodology used, developing generalized products for reuse, and the software engineering environment.
Controls
The selected requirements analysis methodology as documented the Software Development Methods section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
Allocated CSCI requirements as listed in the inspected system design, which may take the form of a SSDD (see activity 3.1.2 Define System Design).
The inspected system requirements, which may take the form of a MIL-STD-498 System/ Subsystem Specification (SSS) (see Appendix E) or other equivalent system documentation (see activity 3.1.1 Define System Requirements).
Defect lists from formal inspections (see Appendix B of the Instructional Handbook for Formal Inspections), unverifiable requirements, requirements to be determined (TBDs), deficiencies, and nontraceable requirements that have been targeted for corrective action (see activities 3.2.1.2 Develop Software Requirements Traceability Matrix, 3.2.1.3 Verify Software Requirements, and 3.2.1.5 Participate In Formal Inspection For Software Requirements Specifications).
Procedures
To perform software requirements definition, the software developer concurrently performs the following subactivities that support each other in defining the software requirements. While performing the subactivities, the software developer keeps reuse of pre-existing software products in mind. If necessary, the SSS may be consulted to review system requirements in their original form.
If a defective requirement is being corrected, the software developers carefully review all other allocated software requirements to ascertain that the correction does not affect the other requirements, or violate a system constraint. Also, the software developers determine if correcting a requirement affects system-level interfaces and inform the systems engineering group as necessary.
1) 3.2.1.1.1 Analyze Software Requirements For Risk. In this subactivity, the allocated software requirements are reviewed as they are developed, identifying deficiencies and high-risk requirements.
2) 3.2.1.1.2 Perform Object-Oriented Requirements Analysis. Using the requirements analysis methodology as specified in the Software Development Methods section of the SDP, the software developer performs software requirements analysis to identify the required objects, classes, functions, behavior, and properties of the problem.
3) 3.2.1.1.3 Develop External Interface Requirements Specification. During this subactivity, the software developer describes the external interfaces (to hardware configuration items (HWCI) or other CSCIs) of the CSCI.
Outputs
Software requirements derived from the allocated system requirements as listed in the SSDD.
�Analyze Software Requirements For Risk
Overview
In this activity, the software developer analyzes the allocated system and derived software requirements to determine which may be high-risk or needing corrective action. A high-risk requirement may be impossible or especially difficult to fulfill, may severely compromise the usability or performance of the software, or may impact the software development schedule and cost.
Roles and Responsibilities
The software developer reviews all software requirements as they are identified to determine which ones are high-risk or in need of corrective action.
Controls
The project-level Configuration Management (CM) Plan (CMP) that documents the change control process for system-level documentation.
Inputs
The allocated computer software configuration item (CSCI) requirements, as listed in the inspected system design, which may take the form of a MIL-STD 498 System/Subsystem Design Description (SSDD) or other equivalent system documentation (see activity 3.1.2 Define System Design).
The object-oriented software requirements derived from allocated CSCI requirements (see activity 3.2.1.1.2 Perform Object-Oriented Requirements Analysis).
The external interface requirements derived from CSCI requirements (see activity 3.2.1.1.3 Develop External Interface Requirements Specifications).
Procedures
This activity focuses on analyzing the system requirements allocated to the CSCI, as documented in the SSDD and those software requirements derived from the system requirements. The analysis concentrates on identifying requirements deficiencies that may put the software project at risk of not meeting those requirements.
A requirement is: 1) a condition or capability needed by a user to solve a problem or achieve an objective, or 2) a condition or capability that must be met or possessed by a system or system component (e.g., a CSCI) to satisfy a contract, standard, specification, or other formally-imposed document. Risk is defined as the likelihood of an undesirable event occurring, and the severity of the consequences of the occurrence [NHB 7120.5, 1993].
The following steps may be performed concurrently with those in activities 3.2.1.1.2 Perform Object-Oriented Requirements Analysis and 3.2.1.1.3 Develop External Interface Requirements Specifications. This activity should not be considered complete until these two activities are concluded and the resulting requirements are analyzed for risk.
1) The software developer examines the allocated system and software requirements to identify any deficiencies. A valid requirement is precise, free of unnecessary design, traceable, and testable. It is important to stress that a valid requirement does not make unnecessary assumptions about the system architecture, hardware, software, or any other design or implementation issue.
A valid requirement has the following 10 basic characteristics:
Unambiguous.
Technically consistent.
Consistent terminology and logic.
Free of undefined terms and acronyms.
Contains specific cross-references.
Free of unnecessary design and implementation (except in special cases).
Traceable to a high-level requirement.
Verifiable (by demonstration, test, analysis, or inspection).
Correct.
A requirement that is faulty in one or more of the characteristics listed above is an invalid requirement. The software developer analyzes the deficiency for potential risk or corrective action. If the software developer finds deficiencies as listed in the MIL-STD-498 System/Subsystem Specification (SSS) (see Appendix E) or SSDD or other equivalent system documentation, a Configuration Change Request (CCR) is completed and submitted to the project-level CM organization according to the project-level CM Plan (CMP). However, because the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) is not baselined at this development stage, the software developer may correct/change invalid SRS requirements without management authorization (see activities 3.2.1.1.2 Perform Object-Oriented Requirements Analysis and 3.2.1.1.3 Develop External Interface Requirements Specifications).
The software developer must identify deficiencies in both the system and software requirements. Consequently, step 1 includes two substeps.
A) The software developer reviews the allocated CSCI requirements. During this review, the software developer identifies as high-risk any requirement failing to meet the characteristics of a valid requirement and any interface requirement (i.e., governing communication with external hardware components or other CSCIs) that are under development or classified as “TBD.”
B) The software developer identifies deficiencies or high risks in the software requirements being derived. The software developer reviews the intermediate and final results of activities 3.2.1.1.2 Perform Object-Oriented Requirements Analysis and 3.2.1.1.3 Develop External Interface Requirements Specifications, and identifies as high-risk any requirement failing to meet the characteristics of a valid requirement or any requirement that can be described as follows:
Any requirement involving external interfaces that are poorly defined or inadequately understood (e.g., unfamiliar external devices).
Any requirement involving a state in which the output values, error conditions, or internal behaviors are unknown or poorly defined.
Any requirement that may cause scheduling problems (these problems are discovered during the analysis that determines whether system activities will occur on schedule).
Any requirements whose properties may be difficult to satisfy (e.g., extremely tight memory constraints).
2) From the list compiled in step 1, the software developer documents each high-risk requirement identified during this activity, clearly indicates why each is a high-risk requirement, and identifies any recommended solutions. The software developer submits these high-risk requirements to the project software manager for evaluation. The software developer also may suggest developing prototype versions of potentially high-risk software areas. Partially designing and coding these risky areas may yield information that leads to corrective actions. If appropriate, the software developer suggests corrective actions for each high-risk requirement identified, such as begin prototyping to verify the feasibility of the requirement.
Outputs
High-risk requirements submitted for management review.
CCRs submitted to the project-level CM organization.
Invalid requirements which must be rewritten.
�Perform Object-Oriented Requirements Analysis
Overview
The software developer applies an object-oriented method to identify and refine detailed software requirements for a computer software configuration item (CSCI) that meet the customer’s and/or end user’s needs. Drawing from inspected allocated system requirements, which may take the form of a MIL-STD-498 System/Subsystem Design Description (SSDD) (see Appendix E), the CSCI’s context is described and the CSCI’s static and dynamic characteristics are analyzed to define the requirements guiding its design and development.
Roles and Responsibilities
The software developer performs the object-oriented requirements analysis from the allocated system specifications.
Controls
The selected requirements analysis methodology as defined in the Software Requirements Analysis section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
Invalid requirements (see activity 3.2.1.1.1 Analyze Software Requirements for Risk) to be corrected.
Allocated CSCI requirements, as listed in the SSDD (see activity 3.1.2 Define System Design).
Procedures
1) The software developer analyzes the allocated CSCI requirements using the methodology defined in the SDP to define the software requirements in an object-oriented manner. Object-oriented requirements analysis uses the concepts of objects, object classes, and object behavior to gather, analyze, and clarify the information relevant to solving the stated problems. Commonly used object-oriented requirements analysis methodologies are described in [Booch, 1994], [Colbert, 1995], and [Rumbaugh, 1991]. A formal process model description of the methodology described in [Colbert, 1995] is provided in Attachment II of this volume.
2) The software developer corrects invalid requirements, if applicable. When doing this, the software developer reviews all other requirements to ensure the corrected requirements do not adversely impact the other requirements.
3) The software developer graphically and textually records and numbers the defined and analyzed object-oriented software requirements in the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E).
Outputs
Upon completing this activity, the following output is developed, verified, and placed in the SRS:
Object-oriented software requirements with applicable accompanying documentation that includes object-oriented diagrams and a data dictionary. The data dictionary fully summarizes each data element in the diagrams.
�Develop External Interface Requirements Specification
Overview
The software developer identifies detailed requirements for the computer software configuration item’s (CSCI) interfaces with the external objects (e.g., Hardware Configuration Items (HWCI)) or other CSCIs. These requirements define the characteristics of the type of interface (i.e., unique or standard), data element transfers (e.g., send, store, access, receive), data-element assemblies (e.g., records, messages, files, arrays, reports), communication methods (e.g., message formatting, transfer rate, interval between transfers), and protocols (e.g., parity, baud rate).
Roles and Responsibilities
This activity is performed by one or more software developers and systems engineers, and the user.
The software developer determines and documents the detailed external interface requirements. The software developer reviews the object-interaction diagram to identify each physical hardware/ software requirement. The software developer assigns a new project-unique identifier (PUI) to each physical hardware/software requirement identified and records the interface characteristic requirements.
The system engineers provide the system hardware and design information required during this activity.
The user may be consulted in designing the user interface.
Controls
See parent activity 3.2.1.1 Perform Software Requirements Definition.
Inputs
Any documentation from the object-oriented requirements analysis which specifically shows interface requirements (see activity 3.2.1.1.2 Perform Object-Oriented Requirements Analysis).
External hardware or software-interface documentation (e.g., MIL-STD-1553B, input file formats).
Any invalid requirements that must be corrected (see activity 3.2.1.1.1 Analyze Software Requirements For Risk).
Procedures
Documentation from the object-oriented requirements analysis may show each external interface associated with the system object by an operation request. This activity concentrates on identifying and defining the physical hardware/software and interface protocols for all operation requests sent to the external objects by the CSCI object. If this activity is being conducted to correct “invalid requirements,” the software developer must ensure that corrections do not impact other requirements documentation.
1) The software developer reviews the applicable requirements analysis documentation (see 3.2.1.1.2 Perform Object-Oriented Requirements Analysis) to identify physical hardware/software requirements that implement the operation request and associated data flow exchanges in the context diagram. The software developer assigns a unique number to each physical hardware/software requirement identified, and records the interface characteristic requirements in paragraph form in the CSCI External Interfaces section of the SRS.
To identify the physical hardware/software and interface characteristics required to communicate with these external devices, the software developer reviews the allocated system requirements and any available external hardware- or software-interface documentation. The following example illustrates an external interface requirement identified from a diagram. Users can diagram their interfaces based on the chosen methodology(ies) in a similar manner.
Example:
Allocated System Requirement: To recover from a deadlocked CPU status, the Watchdog Timer board shall be utilized to reinitialize the CSCI.
SRS: The following diagram shows an external object named “Watchdog” and the CSCI object with an operation request (Write):

� LINK objmakerOLE "c:\\work\\oosd\\reqmnts\\science\\ext_int1.bde" "diagram" \p ���
Example:
Watchdog Timer (see above text and diagram, which is the first part of this example)
The SX360 board contains a watchdog timer feature, which resets the CPU if the timer is not strobed every 1.5 seconds. The central processing unit (CPU) is reset by a hardware-to-hardware interface between the CPU reset capability and the SX360 board. The I/O addresses that access this feature are as follows:
Port Address�Watchdog Timer Function (with required action)��1DOH�Enable (write 1 to enable, 0 to disable)��1D8H�Strobe (write 0 followed by 1)��Enable Watchdog Timer. The watchdog timer feature shall be enabled at start-up by writing a 1 to I/O address 1D0H.
Strobe Watchdog Timer. The CSCI shall strobe the watchdog timer once every 1.0 sec. Should the interval between each strobing of the timer equal or exceed 1.5 sec, the watchdog timer shall reset the CPU. Strobing the timer shall be accomplished by writing the value 0 to I/O address 1D8H, immediately followed by writing the value 1 to the same address or by reading from I/O address 1D8H and then rewriting to the same address the read value XORed with 1.
Rationale:
The external interface defined for the SX360 Watchdog Timer board represents a stated object-oriented software requirement, shown in the diagram, with all necessary interface characteristic requirements defined in numbered paragraphs. The CPU is reset by hardware connections, and is outside the scope of CSCI development.
The object-oriented requirements present an abstract view of the external interface. Notice that the system requirement states only “a Watchdog Timer,” but not a specific physical Watchdog Timer board. The software developer, by reviewing available reference materials (e.g., schematic charts from system engineers, the system architecture) specifies a specific Watchdog Timer board, such as the SX360. The software developer continues defining the interface characteristics as shown on the system’s schematic charts to identify specific I/O addresses 1D0H and 1D8H.
It is important to understand that in this example there could be more than one physical object implementing a single external object (i.e., there could be multiple boards).
2) The software developer determines (with information from system documents or system engineers) which external objects are under development or system-prototyping. The software developer makes note of those interfaces with external objects under development or to be determined (TBD). The requirements describing the interfaces between these external objects and the CSCI object are identified as high-risk TBD requirements, and after the TBDs are resolved the software developer verifies that the interfaces are correctly defined.
3) The software developer separates the interfaces into human, hardware, and software when they are documented in the CSCI External Interface section of the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E). Common physical devices that implement several objects can be stated once and referenced from the others.
4) The software developer determines and documents the human external interface requirements. The objects representing human users in the diagrams map to physical devices, such as a mouse, keyboard, and touch screens. For each user interface (usually found on ground systems), the software developer reviews the allocated system requirements to determine the physical and interface characteristic requirements.
A human or user interface uses terms and symbols familiar to the user. Data entry procedures and menu operations must be consistent throughout the system. If multiple CSCIs interact with the user, the CSCI software developers should meet (with the user present, if possible) to determine a common format for menus, options, data-entry methods, and screen design. Error messages must be concise, positive, and helpful, and lead the user to correctly operate the system. Prototyping may be used (see activity 3.1.2.4 Perform Prototyping) to help determine the format of the user interface.
The software developer should incorporate additional features into human interfaces, including confirmation of destructive actions, an “Undo” facility that restores the system to its previous state, and a “Help” feature. The user should participate in defining these features
The software developer defines and documents each user-interface requirement as completely as possible. The following are examples of user-interface requirements.
Example:
The Help feature’s table of contents shall be displayed when the user enters h or H at the command prompt.
The set of user commands shall not be case-sensitive.
The opening menu shall be identical to the opening menu in the XYZ prototype.
Outputs
The external interface requirements, which are the required characteristics of data elements, data element assemblies, communication methods, and protocols used in communications between the CSCI object and external objects. This information is documented in the CSCI External Interface section of the SRS.
�Develop Software Requirements Traceability Matrix
Overview
In this activity, the software developer determines the completeness of the allocation of the system requirements to the software requirements by creating a Requirements Traceability Matrix (RTM).
Roles and Responsibilities
The software developer creates the RTM.
Controls
The Software Engineering Evaluation System (SEES) Technical Assessment Procedure and Workshop for Requirements Trace/Completeness Matrix [SED-SES-TAP-RTMM-001, 1994] describes the process of creating the RTM.
Inputs
The system requirements allocated to the computer software configuration item (CSCI) as specified in the Requirements Traceability section of the MIL-STD-498 System/Subsystem Design Document (SSDD) (see Appendix E) or other equivalent system document (see activity 3.1 Participate in Systems Requirements And Design).
The software requirements documented in the Requirements section of the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) (see activity 3.2.1.1 Perform Software Requirements Definition).
Procedures
1) The software developer follows the procedures specified in the SEES Technical Assessment Procedure and Workshop for Requirements Trace/Completeness Matrix SED-SES-TAP-RTMM-001 using the software requirements as documented in the Requirements section of the SRS, and the system requirements allocated to the CSCI as specified in the Requirements Traceability section of the SSDD.
2) During the RTM development, inconsistencies (e.g., non-traceable requirements) may be found between the system and software requirements. These inconsistencies should be documented on the forms provided in the SEES and corrected.
3) The completed RTM is placed in the Requirements Traceability section of the SRS.
Outputs
The RTM placed in the Requirements Traceability section of the SRS.
Documented inconsistencies between system and software requirements.
�Verify Software Requirements
Overview
In this activity, the software test group, who is responsible for the acceptance testing of the computer software configuration item (CSCI), analyzes each software requirement to ensure it is verifiable by the qualification methods of demonstration, test, analysis, or inspection. After the software requirements are implemented, the software testers use these qualification methods to ensure that the software requirements, as stated in the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E), are met.
Roles and Responsibilities
The software tester(s) reviews each software requirement to determine if it can be verified.
Controls
See parent activity 3.2.1 CSCI Software Requirements Analysis.
Inputs
The software requirements (see activity 3.2.1.1 Perform Software Requirements Definition).
Procedures
1) The software tester reviews each requirement, both non-functional (e.g., design constraints, standards) and functional (i.e., capabilities the CSCI must perform) to determine if it can be verified after implementation. Consider the following appropriate qualification methods:
Demonstration - Determines the quality of the end item or component properties by observation. A demonstration may use special test equipment or instrumentation to verify requirement characteristics, such as operation performance, human engineering features, and displayed data. The following is an example of a requirement that may be verified by demonstration:
Example:
If the user enters a password with fewer than five characters, the system shall display the following message: “INVALID PASSWORD - PASSWORD MUST CONTAIN AT LEAST 5 CHARACTERS,” and shall request that the user enter a correct password.
Test - Verifies performance requirements by measurement during or after the controlled application of functional and environmental stimuli. This measurement may require using laboratory equipment, recorded data, test procedures, test-support items, or services.
Example:
A software tester executes a test procedure that runs a software unit or the CSCI, and collects the results. Subsequent analysis compares these with the expected results to verify that the tested portion of the CSCI meets the requirement.
Analysis - Validates accumulated data using techniques and tools, such as math models, compilation similarity assessments, or validation of records to confirm that requirements are satisfied. Examples of analysis include: reducing, interpreting, and extrapolating test results. The following is an example of a requirement that can be verified by analysis:
Example:
New controllers shall be able to understand all aspects of the Thermal Control display after two hours of training. After this training, the average number of incorrect interpretations of the data shown in this display shall not exceed two per 8 hours of use.
Inspection - Visually examines the code, output files, documentation, etc. for compliance with standards and specifications. Special laboratory equipment, procedures, test-support items, or services are not used. The following is an example of a requirement that can be verified by inspection:
Example:
The Error-History Log file shall be an ASCII text file.
While reviewing the requirements, the software tester looks for terms that are poorly or ambiguously defined, meaning they could be interpreted in multiple ways. Common errors in requirements include:
The language states general objectives or goals rather than verifiable requirements.
Example:
The system should be easy to use by experienced air-traffic controllers, and the display should be organized in a way that minimizes controller error.
The requirement uses undefined terms. In the following example, “initialize” is never defined.
Example:
The system shall initialize itself upon receiving the user’s Reset command.
The language states untestable reliability requirements.
Example:
The software shall never allow the database to be corrupted.
The software tester includes qualification methods for each requirement in the Qualification Provisions section of the SRS.
2) Upon determining that a requirement is unverifiable, the software tester documents the problems as follows.
A) Identifies the requirement by its number and location in the material being reviewed (e.g., Requirement 4, page 5, Table 2.1).
B) States the requirement as written in the material being reviewed.
C) Identifies and describes the problem, explaining why the requirement is not verifiable. The software tester does not rewrite the requirement because the software tester may not fully understand its intent.
3) The software tester gives the documented set of unverifiable requirements to the software developer(s) for corrective actions.
Outputs
The unverifiable requirements submitted to the software developer(s) for correction.
The qualification methods for each requirement in the Qualification Provisions section of the SRS.
�Document Software Requirements
Overview
In this activity, the software developer(s) finalizes the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E), most of which was completed in the preceding subactivities. Once the SRS is complete, it is submitted for formal inspection (see activity 3.2.1.5 Participate in Formal Inspection for Software Requirements Specification).
Roles and Responsibilities
The software developer documents the software requirements.
Controls
The SRS Data Item Description (DID) specifying the format to use.
Inputs
The partially completed SRS (see activity 3.2.1.1 Perform Software Requirements Definition).
Procedures
The software developer reviews the partially completed SRS against the SRS DID to identify areas that are not addressed or are incomplete. The following steps provide guidance to complete the SRS.
1) Section 1 is the SRS scope. The software developer has documented object-oriented software requirements in other sections of the SRS, and includes language in subparagraph 1.3 stating that the requirements are captured in object-oriented diagrams and the corresponding data dictionary.
2) Section 2 lists referenced documents that are directly applicable to the SRS. This section is best divided into three subparagraphs to list Parent Documents, Applicable Documents, and Information Documents. If no documents are listed, the software developer states this after the appropriate subparagraph title.
The Parent Documents subparagraph lists the numbers, titles, revisions, and dates of the SRS’ parent documents, including the MIL-STD-498 System/Subsystem Specification (SSS), System/Subsystem Design Document (SSDD) (see Appendix E) or other equivalent system documentation, Operational Concept Documents, or any other documents containing requirements that the SRS must fulfill.
The Applicable Documents subparagraph contains references within or directly applicable to the SRS, or references with policies, standards, or other directives binding upon the SRS content. These documents may be divided into government and non-government documents. The software developer includes the appropriate object-oriented methodology documentation.
The Information Documents subparagraph comprises government and non-government documents that, although not directly applicable nor binding, amplify or clarify the SRS information. The software developer indicates if these documents are binding and their relationship to the SRS.
3) Section 3, Paragraph 3.1 specifies the required computer software configuration item (CSCI) states and modes.
4) Section 3, Paragraph 3.2.x specifies the CSCI’s required capability. The software developer completes (or confirms completion of) this section as appropriate using the specified requirements analysis methodology.
5) The other paragraphs of Section 3 cover:
Paragraph 3.3.1 identifies the CSCI’s external interfaces and includes any interface diagrams.
Paragraph 3.3.x uniquely identifies each external interface requirement as represented in the interface diagrams in paragraph 3.3.1.
Paragraphs 3.6 - 3.17 describe general requirements, other than capabilities, of the CSCI.
The software developer completes (or confirms completion of) each section as appropriate, using the specified requirements analysis methodology.
6) Section 3, paragraph 3.18 specifies the precedence and criticality of the software requirements. The precedence and criticality of these requirements are outside the scope of the software developer’s requirements analysis. Project management may specify builds to identify and prioritize which requirements need to be designed and implemented. The software developer obtains the requirement priorities from management and documents them here.
7) Section 4 specifies the qualification methods. In activity 3.2.1.3 Verify Software Requirements, the software testers identify the methods of verifying each software requirement documented in Section 3. If not completed, the software developer obtains the testing methods and records them here.
8) Section 5 contains the Requirements Traceability Matrix (RTM) developed in activity 3.2.1.2 Develop Software Requirements Traceability Matrix. The RTM is developed using the unique identification number given to each entity (i.e., notation) of every diagram created during object-oriented requirements analysis to trace these identified software requirements to the system requirements. The software developer places the RTM in this paragraph.
9) Section 6 contains a glossary and other information to help understand the SRS. The data dictionary is used to build the glossary and a list of acronyms. The name and description of each entity of every object-oriented diagram are alphabetically listed in the glossary. The software developer adds any other information helpful in understanding the SRS, such as CSCI project-related definitions, background information, rationale, and the list of acronyms and abbreviations used in the object-oriented requirements analysis.
Table 3.2.1.4-1 summarizes the preceding steps and indicates which activities and output products correspond to the various paragraphs of the SRS DID. All products shown document the software requirements produced in various forms by subactivity 3.2.1.1 Perform Software Requirements Definition. The activities shown in Table 3.2.1.4-1 produce the products.
�Table 3.2.1.4-1 SRS DID Paragraphs And Activities That Produce Products
SRS DID�Corresponding Activity�Product��Paragraph 1 Scope�3.2.1.4 Document Software Requirements�State that object-oriented Requirements Analysis methodology is used
State that components, which include all entities from the object-oriented diagrams, replaces capability��Paragraph 2 Referenced documents (e.g., standards)�3.2.1.4 Document Software Requirements�Any documents that provide requirements or clarification of requirements are referenced in the data dictionary��Paragraph 3.1 Required states and modes�3.2.1.1.2 Perform Object-Oriented Requirements Analysis�Diagrams and associated text
��Paragraph 3.2.x CSCI capability requirements�3.2.1.1.2 Perform Object-Oriented Requirements Analysis�Diagrams and associated text
��Paragraph 3.3.1 Interface identification and diagrams�3.2.1.1.2 Perform Object-Oriented Requirements Analysis�Diagrams and associated text
��Paragraph 3.3.x (Project-unique identifier of interface)�3.2.1.1.2 Perform Object-Oriented Requirements Analysis�All data dictionary entries for every component shown in the diagrams��Paragraph 3.3.x (a) Priority that the CSCI must assign the interface.�3.2.1.1.2 Perform Object-Oriented Requirements Analysis�Text descriptions��Paragraph 3.3.x (b) Requirements on the type of interface to be implemented.�3.2.1.1.2 Perform Object-Oriented Requirements Analysis
3.2.1.1.3 Develop External Interface Requirements Specification�Type of interface required, if any, real-time data transfer, retrieval of data, address interrupt, procedure/function, timer, etc.
��Paragraph 3.3.x (c) Required characteristics of individual data elements that the CSCI must provide.�3.2.1.1.2 Perform Object-Oriented Requirements Analysis
3.2.1.1.3 Develop External Interface Requirements Specifications�Identified attributes of the CSCI and corresponding data dictionary entries
Additional information as required by the specified object-oriented requirements analysis methodology��Paragraph 3.3.x (d) Required characteristics of data elements assemblies that the CSCI must provide.�3.2.1.1.2 Perform Object-Oriented Requirements Analysis
3.2.1.1.3 Develop External Interface Requirements Specification�External documentation references or incorporation of data elements in the interface��Paragraph 3.3.x (e) Required characteristics of communication methods that the CSCI must use for the interface.�3.2.1.1.2 Perform Object-Oriented Requirements Analysis
3.2.1.1.3 Develop External Interface Requirements Specifications�Standards of interface used��Paragraph 3.3.x (f) Required characteristics of protocols the CSCI must use for the interface.�3.2.1.1.3 Develop External Interface Requirements Specifications
3.2.1.1.2 Perform Object-Oriented Requirements Analysis�Captured in the data dictionary
Any additional information as required by the specified object-oriented requirements analysis methodology��Paragraph 3.3.x (g) Other required characteristics.�Any�Required characteristics for any interface not placed under appropriate paragraph��Paragraph 3.4 CSCI internal interface requirements�Not applicable; done in design activities�Not applicable��Paragraph 3.5 CSCI internal data requirements
Paragraph 3.6 Adaptation requirements�Not applicable; done in design activities�Not applicable��Paragraph 3.7 Safety requirements�Any, although may not be applicable
�Text description as appropriate��Paragraph 3.8 Security and privacy requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.9 CSCI environment requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.10.1 Computer hardware requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.10.2 Computer hardware resource utilization requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.10.3 Computer software requirements�Any, although may not be applicable
�Text description as appropriate��Paragraph 3.10.4 Computer communications requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.11 Software quality factors�Any, although may not be applicable
�Text description as appropriate��Paragraph 3.12 Design and implementation constraints�Any, although may not be applicable�Text description as appropriate��Paragraph 3.13 Personnel-related requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.14 Training-related requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.15 Logistics-related requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.16 Other requirements �Any, although may not be applicable�Text description as appropriate��Paragraph 3.17 Packaging requirements�Any, although may not be applicable�Text description as appropriate��Paragraph 3.18 Precedence and criticality of requirements�3.2.1.4 Document Software Requirements�Text description.��Paragraph 4 Qualification provisions�3.2.1.3 Verify Software Requirements�Qualification methods for each software requirement��Paragraph 5 Requirements traceability�3.2.1.2 Develop Software Requirements Traceability Matrix�RTM��Paragraph 6 Notes�3.2.1.4 Document Software Requirements�Data dictionary is used to build a glossary and list of acronyms��12) The software developer submits the completed draft SRS (i.e., all sections are complete and spell checks are done) for formal inspection.
Outputs
The draft SRS submitted for formal inspection.
�Participate In Formal Inspection For Software Requirements Specification
Overview
The formal inspection of the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) is a means of finding requirement defects. The formal inspection process is documented in the Instructional Handbook for Formal Inspections.
Roles and Responsibilities
The software engineering manager selects the inspection team.
The inspection is performed by members of the software engineering group, including those who developed the requirements being inspected.
Controls
The Instructional Handbook for Formal Inspections documents the formal inspection process.
Inputs
The draft software requirements document, which takes the form of a SRS, includes the software goals and requirements, interface descriptions, trace matrix mapping system requirements to software requirements, data dictionary, and mode definitions and transitions (see activity 3.2.1.4 Document Software Requirements).
Procedures
1) The software engineering manager selects the inspection team from the software engineering group. If possible, the software developers selected should be familiar with similar systems and testing (see Appendices E (particularly inspection type SU) and F of the Instructional Handbook for Formal Inspections).
2) The software developers serving as inspectors evaluate the SRS’s organization and content using the SRS Data Item Description (DID) as the evaluation criterion for proper SRS organization. The primary evaluation criteria for content are in the SRS generic checklist, Software Requirements Checklist, in the Instructional Handbook for Formal Inspections. The software developer may modify this checklist to accommodate the requirements methodology being used.
3) The defects found in the SRS are documented on an inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections).
4) If no defects are found (or all defects were corrected), the SRS is submitted to the software engineering manager for review and approval. After this review, the software developer completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C) and submits it, with the SRS, to the configuration management (CM) staff.
Outputs
The inspection defect list documenting the defects in the draft SRS identified during the formal inspection
An SRS that successfully passed formal inspection and has been placed under CM.
�CSCI Architectural Design
Overview
In this activity, the high-level software design satisfying the software requirements and constraints defined in activity 3.2.1 CSCI Software Requirements Analysis is developed. The software developers partition the computer software configuration item (CSCI) into components, specify all external interfaces, and document the design using the software design methodology specified in the Software Design section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E). The design is documented in the MIL-STD-498 (Architectural) Software Design Description (SDD) (see Appendix E).
Roles and Responsibilities
The software developer develops and documents the software architecture.
Controls
See parent activity 3.2. Perform Software Development.
Inputs
The MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) documenting the software requirements (see activity 3.2.1 CSCI Software Requirements Analysis).
Pre-existing software products, such as reusable software and documents from a reusable library, or existing software and documents from a previous iteration (see activity 4.2 Maintain The Organization’s Assets).
Procedures
Four sequential subactivities are completed in this activity.
1) 3.2.2.1 Develop Architectural Design. In this activity, the software developers use an object-oriented analysis and design method to develop a top-level design, capturing external and visible internal interfaces for the CSCI. Throughout this activity, the software developer reuses pre-existing software products where possible.
2) 3.2.2.2 Develop Software Requirements Traceability Matrix. In this activity, the software developers determine the mapping of the software requirements (documented in the SRS) to the software components. The objective is to create traceability from each software component (identified in the SDD) to its allocated CSCI requirements in the SRS, and from each requirement in the SRS to the software components in which it is allocated. Executing this activity generates requirements traceability tables for architectural design.
3) 3.2.2.3 Document Architectural Design. In this activity, the software developers organize the architectural design into an SDD (see Appendix E).
4) 3.2.2.4 Participate In Formal Inspection For Architectural Design. In this activity, selected members of the software engineering group meets with specific technical team members to conduct a formal inspection of the (Architectural) SDD to identify defects.
�Outputs
The completed and inspected (Architectural) SDD.�
Develop Architectural Design
Overview
In this activity, the software developer uses an object-oriented, software development methodology to construct the high-level architectural design of the computer software configuration item (CSCI).
Roles and Responsibilities
The software developer constructs the architectural design using an object-oriented architectural design methodology.
Controls
The Software Design section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E) indicates the design approach to be followed.
Inputs
The software requirements and accompanying diagrams as documented in the SRS (see activity 3.2.1 CSCI Software Requirements Analysis).
Pre-existing software products from previous build(s), projects, or commercial reusable components (see activity 4.2 Maintain the Organization’s Assets).
Design defects that must be corrected (see activity 3.2.2.2 Develop Software Requirements Traceability Matrix).
Procedures
The SDP’s Software Design section specifies which object-oriented software development architectural design methodology is used. The software developer creates an object-oriented model, capturing external and visible internal interfaces for the CSCI, based on this methodology.
If design defects are being corrected, such as those found during a formal inspection, the software developer reviews each activity to determine impacts to the design as a whole.
1) From the software requirements, using the design methodology specified in the SDP, the software developer develops the architectural design. Existing software products, including pre-existing architectural designs, are reused as much as possible. Commonly used object-oriented design methodologies include [Booch, 1994], [Rumbaugh, 1991], and [Colbert, 1995]. A formal process model of the [Colbert, 1995] architectural design methodology is in Attachment II of this volume.
2) The software developer graphically and textually records the object-oriented architectural design in the (Architectural) MIL-STD-498 Software Design Document (SDD) (see Appendix E).
Outputs
The object-oriented architectural design which includes any diagrams and text descriptions, and the data dictionary.�
Develop Software Requirements Traceability Matrix
Overview
In this activity, the software developer verifies that the software requirements (as defined in the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E)) are met by the architectural software design as documented in the MIL-STD 498 Software Design Description (SDD) (see Appendix E). Tables are built showing the mapping of each requirement to one or more software components and the mapping of each software component to one or more requirements.
Roles and Responsibilities
The software developer creates the requirements traceability tables.
Controls
See parent activity 3.2.2 CSCI Architectural Design.
Inputs
The architectural design describing the software components making up the computer software configuration item (CSCI) (see activity 3.2.2.1 Develop Architectural Design).
The SRS listing the requirements allocated to the CSCI (see activity 3.2.1 CSCI Software Requirements Analysis).
Procedures
1) The software developer creates a table as shown in Table 3.2.2.2-1. The number (or other unique identifier) of each requirement that is specified in the Requirements section of the SRS is listed in the Requirements column of the table.
2) For each requirement, the software developer reviews the software components described in the CSCI Components section of the SDD, and determines which component or set of components satisfies the requirement. The name (or the component’s unique number or acronym) is then placed in the Component column of the table.
Table 3.2.2.2-1 SRS Requirements and SDD Components
Requirement�Component��1�Instrument_Controller��2�Laser_Controller��3�Instrument_Controller��4�Instrument_Controller, Laser_Controller��5�Instrument_Controller, Laser_Controller��6�Laser_Controller��7�Instrument_Controller, Laser_Controller��3) The software developer then reviews the SRS requirements list for any requirements that are not being met. These indicate design errors that must be corrected.
4) A second table is then built as shown in Table 3.2.2.2-2. Each software component described in the CSCI Components section of the SDD is listed in the Components column of the table. In the Requirements column, the software developer lists the requirements being met (totally or in part) by the software component.
Table 3.2.2.2-2 SDD Components and SRS Requirements
Component�Requirement��Instrument_Controller�1, 3 - 5, 7, 8, 10 - 13, 24 - 42, 43, 56��Laser_Controller�2, 4 - 7, 14 - 23��5) The software developer then reviews the table created in step 4 to identify any components that do not map to any requirements. These may indicate design errors.
6) The completed requirements traceability tables are placed in the Requirements Traceability section of the SDD.
Outputs
The requirements traceability tables placed in the Requirements Traceability section of the SDD.
Non-traceable design components that do not map to the requirements, or requirements not addressed, which are documented in list format and either corrected or eliminated.
�Document Architectural Design
Overview
In this activity, the software developer completes the (Architectural) MIL-STD-498 Software Design Description (SDD) using the SDD Data Item Description (DID) (see Appendix E) as a template.
Roles and Responsibilities
The software developer completes the (Architectural) SDD.
Controls
The SDD DID determines the format of the document being completed.
Inputs
The (Architectural) SDD partially completed in the prior design activities (see activities 3.2.2.1 Develop Architectural Design and 3.2.2.2 Develop Software Requirements Matrix).
The inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections) of errors found during the formal inspection (see activity 3.2.2.4 Participate In Formal Inspection For Architectural Design).
Procedures
If the SDD is being updated based on errors found during a formal inspection, the software developer carefully reviews each section to verify that changes in one section do not impact other sections.
1) The software developer reviews the project’s partially completed SDD, and compares it to the SDD DID. Table 3.2.2.3-1 provides a mapping of the SDD DID to the products of the typical object-oriented architectural design methodologies.
Table 3.2.2.3-1 Guidance on SDD DID to Activities and their Products
SRS DID�Product��Section 1 Scope���Section 2 Referenced documents (e.g., standards)���Section 3 CSCI-wide design decisions�All documented design decisions��Section 4 .1 CSCI components�Any object diagrams
Text description of each object diagram
List of all objects’ project-unique identifier (PUI) numbers, descriptions, and allocated requirements, including operations, and their inputs and outputs��
Section 4.2 Concept of execution�All external behavior diagrams.
Note: behavior diagrams may be referred to as “dynamic modeling” or “functional” diagrams, or something entirely different based on the methodology used.
Text description of each behavior diagram��Section 4.3.1 Interface design�Interface diagrams (if available) and accompanying text descriptions��Section 5 Detailed design�not applicable to architectural design��Section 6 Requirements traceability�Traceability matrices��Section 7 Notes�Data dictionary (if available) to build a glossary and list of acronyms��2) The software developer then fills in any additional required sections of the SDD DID. The software developer can reference or copy pertinent information in other completed documents (e.g., System Overview section of the MIL-STD-498 System Requirements Specification (SRS)) (see Appendix E). In Section 3, CSCI-wide Design Decisions, the software developer identifies any design decisions that impact how the software will behave. These decisions should be identified at the project’s Preliminary Design Review (PDR) (see activity 1.2.2 Participate In Major Project Reviews). The methodology used and any other information needed to understand the design also should be explained or referenced.
3) The software developer then notifies the software engineering manager that the SDD is ready for formal inspection.
Outputs
The completed (Architectural) SDD which is ready for formal inspection.
�Participate In Formal Inspection For Architectural Design
Overview
The formal inspection of the MIL-STD-498 Software Design Description (SDD) (see Appendix E) is a means of finding defects. The formal inspection process is documented in the Instructional Handbook for Formal Inspections.
Roles and Responsibilities
The software engineering manager selects the inspection team, who performs the formal inspection.
Controls
The Instructional Handbook for Formal Inspections specifying the formal inspection process.
Inputs
The completed (Architectural) SDD to be inspected (see activity 3.2.2.3 Document Architectural Design).
Procedures
1) The software engineering manager selects the inspection team from the available software developers.
2) The SDD is formally inspected. The generic checklist for the SDD formal inspection, “I0-Architecture Design Checklist” in the Instructional Handbook for Formal Inspections, may be modified based on the design methodology used. Additional items to review for object-oriented designs include:
The software design structure is clearly defined, as are the resulting major input and output flows and the relationships between design components.
The overall software structure is consistent with an object-oriented design and implementation concept.
The interface between the design components and the operation system or executive is clearly defined. The methods for invoking each design component’s execution are described.
The traceability relating each software component documented in the SDD to the specific requirement in the MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) is documented in the SDD.
All design items specified as “To Be Determined” (TBD) are acceptable technical risks to start detailed design. A due date should be associated with these TBDs to ensure they are addressed in a timely manner.
The overall design is uniform (e.g., all design components use the same mechanism for monitor and control, error handling, and information transfer).
3) The errors found during the inspection are documented on an inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections).
4) Upon successfully completing the formal inspection (i.e., all defects are corrected), the SDD is submitted to the software engineering manager for review and approval. After this review, the software developer completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C), and submits it, with the SDD, to the configuration management (CM) staff.
Outputs
The inspected (Architectural) SDD, which has been placed under CM control.
The inspection defect list of the defects found during the formal inspection (see Appendix B of the Instructional Handbook for Formal Inspections).
�Develop Detailed Design
Overview
In this activity, the software developers produce a refined detailed design suitable to allow the computer software configuration item (CSCI) to be implemented and tested by someone other than the original designer. The software developer creates detailed descriptions of how each unit implements a portion of the software components defined in the MIL-STD-498 (Architectural) Software Design Document (SDD) (see Appendix E), and defines each unit's function, inputs, outputs, and constraints (e.g., memory size and response time). The software developer also specifies logical, static, and dynamic relationships among the units using a development methodology (e.g., object-oriented methodology).
Roles and Responsibilities
The software developers refine the CSCI’s architectural design, and produce a detailed design fulfilling all software requirements and allowing the CSCI to be implemented and tested by someone other than the designer.
Controls
See parent activity 3.2. Perform Software Development.
Inputs
The (Architectural) SDD (see activity 3.2.2 CSCI Architectural Design).
Procedures
The detailed design can be described using language-specific graphical diagrams, Program Design Language (PDL), or a combination of the two. Computer-aided software engineering (CASE) tools support using PDL and these graphical diagrams.
For software that processes or manipulates a large amount of related data, the software developer defines the structure of the data and any units that must be coded in an assembly language or other nonstandard languages. Similarly, the software developer describes any special conditions that must be followed when coding the software unit.
This activity has three subactivities: 3.2.3.1 Develop Unit Detailed Design; 3.2.3.2 Document Detailed Design; and 3.2.3.3 Participate In Formal Inspection For Detailed Design. Subactivities 3.2.3.1 Develop Unit Detailed Design and 3.2.3.2 Document Detailed Design can be performed sequentially or iteratively. Subactivity 3.2.3.3 Participate In Formal Inspection For Detailed Design is performed only after the other two subactivities are successfully completed. The following paragraphs summarize the subactivities.
1) 3.2.3.1 Develop Unit Detailed Design. In this activity, the software developer uses the object-oriented information produced in activity 3.2.2 CSCI Architectural Design to yield a detailed design for each software code unit. The software developer decides how to represent each object and class using the implementation language.
2) 3.2.3.2 Document Detailed Design. In this activity, the software developer completes the (Detailed) SDD to reflect the results of activity 3.2.3.1 Develop Unit Detailed Design. These results include language-specific diagrams, as well as any other diagrams, and the updated data dictionary.
3) 3.2.3.3 Participate In Formal Inspection For Detailed Design. In this activity, the software developer meets with other software engineering group members to formally inspect the detailed design to identify any defects.
Outputs
The inspected (Detailed) SDD which has been placed under configuration control.
�Develop Unit Detailed Design
Overview
The software developer prepares a description of how each software unit accomplishes some portion of the software requirements. The software developer uses a software development methodology and a selected implementation language (e.g., Ada) to create a detailed design of the computer software configuration item (CSCI) based on the MIL-STD-498 (Architectural) Software Design Document (SDD) (see Appendix E). The software developer records the detailed design using diagrams and Program Design Language (PDL) specific to the design methodology and implementation of the language selected.
Roles and Responsibilities
The software developer constructs the detailed CSCI design.
Controls
The SDD Data Item Description (DID) which provides the format for documenting the detailed design.
The detailed design methodology to be followed, as documented in the Software Design section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
The (Architectural) SDD (see activity 3.2.2 CSCI Architectural Design)
Existing software products, such as software requirements from previous builds, and reusable software designs from previous projects or versions (see activity 4.2 Maintain The Organization’s Assets).
The inspection defect list which documents any defects found during a formal inspection (see Appendix B of the Instructional Handbook for Formal Inspections) (see activity 3.2.3.3 Participate In Formal Inspection For Detailed Design).
Procedures
The detailed design is developed using the methodology specified in the Software Development Methods section of the SDP.
1) The software developer develops the unit detailed design in an object-oriented manner based on the method specified in the SDP. Object-oriented, unit detailed design uses the concepts of objects and object classes to gather, analyze, and clarify the information relevant to solving the stated problems. Discussions of developing detailed object-oriented designs for Ada are in [Booch, 1994], [Colbert, 1995], and [Rumbaugh, 1991]. Appendix II of this volume contains a formal process description for implementing Colbert’s Object-Oriented Software Development (OOSD) methodology. The architectural design is being refined into a detailed design from which code will be written. Existing software products and designs are reused as much as possible.
2) The software developer corrects invalid or incorrect PDL or documentation, such as those listed in an inspection defect list, if applicable. When doing this, the software developer reviews all other PDL or documentation to ensure that they are not adversely impacted by the corrective actions.
3) The software developer documents the resulting PDL and object-oriented design diagrams and descriptions in the (Detailed) SDD as described in the SDD DID.
Outputs
The detailed design for all the code units documented in the (Detailed) SDD.
�Document Detailed Design
Overview
In this activity, the software developer completes and reviews the MIL-STD-498 (Detailed) Software Design Document (SDD) (see Appendix E).
Roles and Responsibilities
The software developer completes the (Detailed) SDD.
Controls
The SDD Data Item Description (DID) determining the SDD format.
Inputs
The detailed design for all software units of the computer software configuration item (CSCI) documented in the SDD (see activity 3.2.3.1 Develop Unit Detailed Design).
Procedures
Note: The (Detailed) SDD is an expansion of the (Architectural) SDD. Sections 1 - 4 of the (Detailed) SDD are the same as the (Architectural) SDD.
1) The software developer reviews Section 5, Detailed Design, of the (Detailed) SDD completed during activity 3.2.3.1 Develop Unit Detailed Design and the updated data dictionary to verify they are complete. The data dictionary is a SDD appendix.
2) The software developer reviews Sections 1 - 4 of the (Detailed) SDD to verify that any changes to the architectural design based on completing the detailed design in those sections were requested and implemented via Software Change Requests (SCR) (see Appendix C).
3) Once the software developer is satisfied that the documentation is complete and consistent, the (Detailed) SDD is submitted for formal inspection (see activity 3.2.3.3 Participate In Formal Inspection For Detailed Design).
Outputs
The draft (Detailed) SDD ready for formal inspection.
�Participate In Formal Inspection For Detailed Design
Overview
In this activity, the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) is formally inspected to detect defects.
Roles and Responsibilities
The software engineering manager selects the inspection team.
The software developers on the inspection team perform the formal inspection.
Controls
The Instructional Handbook for Formal Inspections documents the formal inspection process.
Inputs
The draft (Detailed) SDD to be inspected (see activity 3.2.3.2 Document Detailed Design).
Procedures
1) The software engineering manager selects the inspection team from the available software developers. The selected individuals should have a good knowledge of the design methodology used and Ada, with experience in similar applications.
2) The (Detailed) SDD is formally inspected. The generic checklist for the detailed design (e.g., the “Detailed Design Checklist”) is in the Instructional Handbook for Formal Inspections. In addition to the items on the “Detailed Design Checklist,” the team should verify that all design diagrams are complete to the unit level, as specified in the design methodology used and that Program Design Language (PDL) representations were created.
3) Defects found during the formal inspection are documented on the inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections).
4) After successfully completing the formal inspection (i.e., all defects are corrected), the (Detailed) SDD is submitted to the software engineering manager for review and approval. After this review, the software developer completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C) and submits it, with the (Detailed) SDD, to the software configuration management (CM) staff.
Outputs
The inspected (Detailed) SDD submitted to the software CM organization for control after all defects are corrected.
The inspection defect list documenting the errors found (see Appendix B of the Instructional Handbook for Formal Inspections).
�Software Implementation And Unit Testing
Overview
In this activity, software compilation units are implemented and individually tested based on the detailed design as documented in the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) in activity 3.2.3 Develop Detailed Design.
Roles and Responsibilities
The software developer implements and tests the code unit.
Controls
See parent activity 3.2 Perform Software Development.
Inputs
The detailed design for the unit to be implemented (or the pre-existing unit design reused from a previous project) and the build plan (as documented in the (Detailed) SDD), indicating the compilation order for the computer software configuration item (CSCI) (see activity 3.2.3 Develop Detailed Design).
Pre-existing software products (to be modified or incorporated), if applicable (see activity 4.2 Maintain The Organization’s Assets).
Procedures
Before performing this activity, determine if it is necessary based upon the nature of the unit. Documented, tested software components from a recognized reuse library or commercial reusable software that require no recompilation are considered 100% reusable. This entire activity should be unnecessary for software ready for integration. This activity must be performed to some degree for all other code.
The following subactivities are performed for each code unit. Note: subactivities 3.2.4.1 Implement Software Unit and 3.2.4.2 Prepare Unit Tests may be concurrently performed. Subactivities 3.2.4.3 Test Unit and 3.2.4.4 Analyze Unit Test Results are performed sequentially upon completing subactivities 3.2.4.1 and 3.2.4.2. The test failure of a code unit may result in repeating activities 3.2.4.1, 3.2.4.3, and 3.2.4.4.
1) 3.2.4.1 Implement Software Unit. In this activity, the code is written and inspected.
2) 3.2.4.2 Prepare Unit Tests. In this activity, the test cases for the code unit are developed and documented in a MIL-STD-498 Software Test Description (STD) (see Appendix E).
3) 3.2.4.3 Test Unit. In this activity, the code unit is tested and the test results are recorded in the Detailed Test Results section of the MIL-STD-498 Software Test Report (STR) (see Appendix E).
4) 3.2.4.4 Analyze Unit Test Results. In this activity, the unit test results are reviewed to verify that they are acceptable, and the Software Test Report is completed.
Outputs
The validated units implemented and certified by unit testing.
Unit tests defined and documented in the Test Descriptions and Test Procedures sections of the (unit-level) STD.
Unit test results recorded in a (unit-level) STR.
�Implement Software Unit
Overview
In this activity, a compilation unit is created or modified, compiled, exercised (optional), measured, and verified. The completed compilation unit is then ready to be unit tested.
Roles and Responsibilities
The software developer implements the code unit.
Controls
See parent activity 3.2.4 Software Implementation And Unit Testing.
Inputs
The detailed design for the unit to be implemented, which is documented in the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) (see activity 3.2.3 Develop Detailed Design).
Pre-existing code (to be modified or reused), if applicable (see activity 4.2 Maintain The Organization’s Assets).
Code unit(s) to be corrected due to test failure (see activity 3.2.4.4 Analyze Unit Test Results).
Procedures
The software developers iteratively perform subactivities 3.2.4.1.1 Code Unit, 3.2.4.1.2 Compile Unit, 3.2.4.1.3 Exercise Unit, and 3.2.4.1.4 Collect Code Measures until it is believed that the unit is ready for inspection. At this point, activity 3.2.4.1.5 Verify Unit is performed.
If code units are being corrected due to test failure, all subactivities are performed to ensure integrity of the corrected code.
1) 3.2.4.1.1 Code Unit. In this subactivity, the code is written based on the unit design in the SDD. Pre-existing code (to be modified or reused) is utilized where appropriate.
2) 3.2.4.1.2 Compile Unit. The unit is compiled in this activity.
3) 3.2.4.1.3 Exercise Unit. (Optional) Perform this subactivity only if the code contains features whose execution is uncertain.
4) 3.2.4.1.4 Collect Code Measures. In this subactivity, the code is analyzed. This should be mandatory for mission-critical code, but may be optional for non-critical code (see the appropriate appendix of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E) for details).
5) 3.2.4.1.5 Verify Unit. In this activity, the source code is formally inspected.
Note: All code is formally inspected, and, except for code containing uncertain, high-risk features, the software is not tested prior to the inspection. Error detection through testing is an order of magnitude more costly (in effort and schedule) than error detection through inspection. Therefore, it is most cost effective to inspect the code prior to any unit testing.
Outputs
The inspected unit source code.
�Code Unit
Overview
In this subactivity, an Ada compilation unit (e.g., package body, task body, or separate procedure or function) is coded.
Roles and Responsibilities
The software developer codes the compilation unit.
Controls
The coding standards and style guides, possibly tailored for the project, as specified in the Standards for Software Products section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
The inspected detailed design for the unit to be implemented, as documented in the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) (see activity 3.2.3 Develop Detailed Design).
Pre-existing code (to be modified or formalized), if applicable (see activity 4.2 Maintain The Organization’s Assets).
Code units to be corrected (see activities 3.2.4.1.3 Exercise Unit, 3.2.4.1.4 Collect Code Measures, 3.2.4.1.5 Verify Unit, and 3.2.4.4 Analyze Unit Test Results).
Procedures
If code units are being corrected due to test failure, all subactivities are performed to ensure integrity of the corrected code.
1) Include the prolog and headers as prescribed in the project’s coding standards, and defined in the Standards for Software Products section of the SDP. Complete the prolog and headers with project and programmer-specific information.
2) Write the new code, modify pre-existing code, or correct code as necessary. Heuristics and guidelines for writing the code follow:
A) General. Become familiar with the project’s coding standards and employ the guidelines within.
B) Readability. Use names that are intuitive to the objects and their operations, not to the current or anticipated application domain. Provide adequate commentary, including history, behavior, exceptions, and resource consumption, as appropriate.
C) Portability.
Avoid inserting machine code.
Avoid address clauses in declarations.
Avoid (or be prepared to justify) constructs that may behave differently in different environments (e.g., platforms, compilers, vendors), or which may be sensitive to initial/restart conditions. These include, but are not limited to, the following:
Tasks and tasking statements.
Unchecked type conversions.
Record type alignment and component clauses.
Pragmas.
Declarations Integer, Short Int, and Long Int, Natural, Positive (use explicitly defined types instead); Declarations Float, Short Float, Long Float (use explicitly defined types instead).
Fixed clauses.
Max Int, Min Int.
Max Digits, Max Mantissa.
Fine Delta.
D) Maintainability.
Avoid “use” clauses except for overloaded operators. Use dot notation for external names and calls so scoping and dependencies are explicitly clear.
Remove extraneous “with” clauses.
Avoid “go to” and “abort” statements unconditionally. Avoid “delay” statements unless absolutely necessary. This may indicate inaccuracy in concurrent design because the duration of such a delay is nondeterministic.
Avoid unnecessary use of labels.
Choose positive rather than negative forms for Boolean expressions, unless the relational expression better reflects what is going on in the code.
Include/retain unused object attributes and operations when desirable for completing the abstraction, whether or not the current application uses them. (At a minimum, include these attributes and operations in the appropriate Ada specification. If required, implementing the operations in the body may be postponed until the object is a candidate for a reuse library). Include generic iterators where appropriate.
Include explicit constructor, destructor, and initialization/reset operations for each object. Be certain that initialization/default/reset values are meaningful for the object, irrespective of the domain.
Ensure functions have no side effects (i.e., functions shall not (directly or indirectly) change non-local objects).
Avoid using “others” in case statements; instead, use exhaustive cases and an exception handler. This guideline can be set aside in limited, well-justified cases, where the range of possible values for the switch condition is tightly constrained.
Example:
A keyboard-input handler, where the CASE switch might operate on:
digits.
punctuation.
alpha_low.
alpha_cap.
others.
This is a situation in which the guideline can be set aside.
Be certain all possible Ada-defined exceptions are handled. Do not use a handler for “others” during development; allow the exception to be unhandled instead.
E) Real-time scheduling. The software developer may evaluate and adjust the real-time scheduling algorithm for flight software. This need is often a result of errors detected during testing in which hard scheduling deadlines are missed, timing budgets are exceeded, or the implementation activity itself, may be a prototyping effort to establish the scheduling algorithm. The rate monotonic scheduling algorithm should be considered. This algorithm and its application to Ada programs are described in a technical report Real-Time Scheduling Theory and Ada [CMU/SEI-89-TR-14], available as a resource in the Software Engineering and Analysis Lab (SEAL). Rate monotonic analysis may be performed whether the scheduler involves a single cyclical executive or multiple Ada tasks.
The rate monotonic algorithm should be employed by the software only when the scheduling problem is non-trivial, and one or more of the following conditions must be met:
Guaranteed fast software response to urgent events.
Need for timely scheduling of periodic tasks (i.e., schedulable entities).
Stability under transient overload conditions (i.e., software guarantee that the deadlines of selected critical tasks are met even when the system is overloaded by events).
In early implementation activities, the processor budget for each task (i.e., schedulable entity in a cyclic executive) should be estimated, then simulated using callable dummy loads. As more of the functional software is implemented, the dummy loads are replaced by actual loads. This approach keeps rework to a minimum. Actual performance against deadlines and processor budgets are monitored throughout implementation and integration, and rework is performed as necessary.
F) Conversion of detailed design to code. The tasks, packages, subsystems (e.g., collections of packages), generics, and structurally-significant procedures and functions are determined and expressed through the detailed design. The procedure calls, task entries, and formal parameters are determined. Ada packages of structural significance are completely or almost completely specified, and PDL expresses the major Ada executable constructs, such as CASE and LOOP structures of significance. Thus, coding involves completing structures begun during design, as well as discovering and completing lower-level structures.
The need for lower-level procedures, functions, exception handlers, or even tasks (e.g., monitor task) may be discovered. These should be added to the body of the package they are needed in either inline or as separate compilation units, depending upon their size. Unless they impact the package specification or interface to other packages, there is no need to perform a separate design activity. That is, there is no need to update the detailed design.
The need for additional packages, such as utilities, which makes sense to separately encapsulate, also may be discovered. If such a package is used by only one client package, it should be “withed” by that client body. Again, no design activity is necessary. If the package is used by multiple client packages, it should be “withed” by the bodies of each client. In that case, architectural and detailed design activities should be performed to show the new package.
If this is the last expected invocation of this activity for a compilation unit, use a formatter (if available) to produce source code with consistent capitalization and indentation. The mature compilation unit must meet the organizational coding standards.
For additional guidance, developers should follow Ada Quality and Style: Guidelines for Professional Programmers. In the event of conflict between the document and this Guidebook, the Ada Quality and Style guidelines should be followed.
Outputs
The coded Ada unit that is ready to be compiled.
�Compile Unit
Overview
This activity describes compiling, binding, and linking steps for an Ada unit using the Alsys Ada compilation system.
Roles and Responsibilities
The software developer compiles the unit, and binds and links it, if applicable.
Controls
The Software Configuration Management (SCM) directory structure for the project, as described in the Software Configuration Management Volume of this Guidebook.
Inputs
The coded Ada unit that is ready to be compiled (see activity 3.2.4.1.1 Code Unit).
Procedures
This activity, by its nature, is extremely tool dependent. The following steps are specific to an Alsys Ada environment. For other languages or environments, consult the compiler documentation for equivalent steps and compilation options. These steps may be executed from within the Alsys Adaworld environment, or by using individual Adaworld commands from the DOS command line. Consult the Alsys compiler documentation for further guidance on Adaworld or the mechanics of any procedural step.
1) Based on the SCM directory structure, create a link from the new Ada library to the Ada library for the computer software configuration item (CSCI), if necessary. Detailed instructions for creating Alsys libraries and links appear in the Alsys compiler documentation.
2) Set up and remain cognizant of default compiler options. Base these options on the most typical mix of option settings used during compilation (see step 3). The initialization (.ini) files, which contain these defaults, can be persistent and the same for all options except library names.
3) Invoke the compiler, ada.compile, with the following options selected:
Debug on. This option causes debugging information separate from the object code to be kept in the Alsys library. Therefore, use this option when the run-time Alsys debugger is anticipated to be used.
Debug off. Typically, this option is used for compiling mature code from project libraries. While code is under development, this option should be considered only if using the Alsys debugger is ruled out.
Exception traceback on. This option results in traceback when unhandled exceptions are encountered at run time. It should always be used.
Type and constraint checking on. This option should always be used, unless memory or performance constraints cannot be met, and re-design or re-coding is out of the question.
Listing. The listing file option must be selected during the compilation for code inspection. At other times, using this option is discretionary.
4) When an executable image is desired, link the program where the bind step is set up to automatically call the linker, specifying the desired main procedure and that the executable should reside in the software developer’s directory. During unit development, the main procedure is generally a test driver or a partially completed version of the top-level dispatcher. For later compiles, the actual main procedure is used. Keep in mind that the compilation units specified via the hierarchical Ada “withing” structure are automatically linked into the executable image.
Outputs
Executable unit in the Alsys library.
Code listing for inspection.
�Exercise Unit
Overview
In this activity, the software developer gains confidence in a high-risk Ada compilation unit. Typically, the unit directly progresses from successful compilation into a formal inspection, then into unit test. However, the software developer may need to verify using an uncertain feature of the language, operating system, or environment prior to inspection. This activity is not an exhaustive duplication of future unit testing. It should be performed only for high-risk units.
Roles and Responsibilities
The software developer exercises the unit.
Controls
See parent activity 3.2.4.1 Implement Software Unit.
Inputs
The executable unit to be exercised, which is successfully compiled (see activity 3.2.4.1.2 Compile Unit).
Procedures
The following steps are sequentially performed:
1) Determine the appropriate level and amount of time to exercise the unit. The unit may be exercised in a black box manner; that is, as an entire unit that should demonstrate certain functionality. This should be sufficient; however, unit paths may be exercised in a white box manner; that is, in a debugging environment. The unit should be exercised only to the extent the software developer is confident it operates as specified.
2) Set up the environment in which to exercise the unit. The unit is exercised on the host platform with any necessary drivers, simulators, and other units, if possible.
3) Run the unit code. This may involve invoking the Alsys debugger and loading initial values to bring the unit to a known initial state, especially for white-box testing.
4) Determine if the error level is too high or if any error is functionally or structurally significant. If problems are found, a limited amount of debugging and code correction may be done. If the number of errors is too great, or any error has a significant impact as determined by the software developer based on engineering judgment, the unit is returned to the coding activity (activity 3.2.4.1.1 Code Unit) for re-coding.
Outputs
The exercised unit. If correct, the software developer has enough confidence in the unit to submit it for formal inspection. If incorrect, the unit is corrected.
�Collect Code Measures
Overview
In this activity, technical measures are collected on compilation unit source code.
Roles and Responsibilities
The software developer collects technical measures on the code.
Controls
See parent activity 3.2.4.1 Implement Software Unit.
Inputs
The coded Ada unit that is transportable for input to the code analysis tools (i.e., McCabe and AdaMAT) (see activity 3.2.4.1.1 Code Unit).
Procedures
The following steps are extremely tool dependent and must be tailored based on the software engineering environment and available tools. This procedure applies to collecting one or more Ada source files.
For information on tool support for code metrics see:
McCabe & Associates, Inc., “BattleMap Analysis Toolset” [McCabe, 1992]. The User’s Manual and Command Line Interface Reference should be consulted for operating the tool set and available analyses.
Dynamics Research Corporation, Ada Measurement and Analysis Tool (AdaMAT) [Dynamics Research, 1992]. Both the User Manual and Reference Manual should be consulted for operating the tool and a deeper understanding of the analyses.
1) The McCabe environment should be initialized once for all software developers. Where reasonable, a shell around the McCabe tools can standardize the interface and increase productivity of tool users. However, this compromises the users’ ability to explore the tool set’s full capability, and, thereby, limits their recommendations for process improvement regarding access to extended tool functions.
The software developer sets up standard hard copy output reports as follows, unless otherwise directed:
A) Set control flow graphs to A-sized paper (color output preferred).
B) Set BattleMap structure charts to largest available plot paper (color output preferred). (If D-size or larger, set to plot Node Names rather than coded identifiers).
C) Set metric reports (including Halstead metrics sorted alphabetically (ascending order; print in landscape mode).
D) Set coverage analysis control graphs to A-sized paper (color output preferred).
E) Set coverage analysis battle maps to largest available plot size (color output preferred).�F) Set desired complexity thresholds. See User’s Guide [McCabe, 1992]:
Set cyclomatic complexity threshold at seven.
Set essential complexity threshold at two.
Set design complexity threshold at five.
G) Determine whether hard copy output will be color or black and white. If black and white, verify that arc and node representations from color coding are clearly discriminating (if not, check with systems administrator or vendor support).
2) Reference the National Institute of Standards and Technology (NIST) Special Publication 500-99: “Structured Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric” to understand the standard set of McCabe measures, if necessary,
3) Generate McCabe Outputs for code inspection package as follows:
A) Gather inputs for McCabe processing: compiled source code for all software in scope of review packet, compiled source code for specification units whose Ada bodies or subprograms are in the review packet, or Program Design Language (PDL) corresponding to above source code.
B) Prepare the inputs for processing: append source code files (e.g., specs, bodies, and subprograms) into a single, temporary Ada source file for efficient parsing; append PDL files into a single, temporary PDL file; and port the source code and PDL files to the machine on which the McCabe software will be run using ftp (or any other porting mechanism).
C) Run McCabe’s core tool set twice, once for each input file, generating all of the following outputs:
For each Ada compilation unit or function/procedure, whichever is smaller, and for each equivalent PDL unit:
Control flow graph
Annotated source code listing
Text file for test cases
For each source code aggregation file (corresponds to entire inspection package), and for each equivalent PDL aggregation:
Metric report, sorted alphabetically (ascending)
Metric report, sorted by complexity (descending)
BattleMap structure chart showing unit relationships
Annotated node index
4) Interpret/summarize the results of McCabe Outputs for Code Inspection Package. For each pair of control flow graphs (Ada and PDL), note the match/mismatch status of flow graphs. Examine nested or repeated control structures for commonality and collapse. If any complexity thresholds are exceeded, prepare justification or reduction recommendation. For each annotated source code listing, highlight the control nodes. For each text test coverage file, flag data sets that are impossible and show the rationale; correlate to the graph and annotated source listing to reveal bad logic and untraceable paths. For the BattleMap structure chart showing unit relationships, identify any vulnerable subtrees containing multiple nodes which trip complexity thresholds. The remaining McCabe output products (i.e., metric reports, node index) are for documentation purposes in the inspection process. No summary/interpretation of these products is necessary.
5) Include copies of McCabe outputs and summary reports in the code inspection package for distribution. The software developer re-codes the unit if modifications or corrections are needed (see activity 3.2.4.1.1 Code Unit).
6) Obtain an AdaMAT report. Use the same source code by issuing the command sequence in the AdaMAT User Manual.
7) Include copies of the AdaMAT report in the code inspection package for distribution.
Outputs
The code quality measures as described in the McCabe and AdaMAT analyses.
Code to be corrected based upon McCabe and AdaMAT analysis results.
�Verify Unit
Overview
In this activity, the unit source code is formally inspected. This activity is performed for all code to be incorporated into the end product or into any validated simulators.
Roles and Responsibilities
The software developers, as well as other software engineering group members, may serve as members of the inspection team.
The software engineering manager selects an inspection team.
Controls
The Instructional Handbook for Formal Inspections that documents the formal inspection process.
Inputs
Code listing to be inspected (see activity 3.2.4.1.2 Compile Unit).
The code quality measures (see 3.2.4.1.4 Collect Code Measures).
Procedures
Several units are formally inspected at one time, not just one unit as the name of this activity implies. Generally, up to 200 source lines of Ada code can be examined at an inspection. If a computer software configuration item (CSCI) totals 200 or fewer source lines, it is best to inspect the entire CSCI in one inspection.
1) The software developer notifies the software engineering manager that code is ready for formal inspection.
2) The software engineering manager selects an inspection team and assigns the roles. The software developer who wrote the unit is assigned the role of author.
3) The assigned team inspects the source code listing, as detailed in the Instructional Handbook for Formal Inspections. The code quality measures also may be reviewed to verify the code is of sufficient quality.
4) The errors found during the inspection are documented on an inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections).
Outputs
The inspected code unit.
The inspection defect list which lists the defects found during the formal inspection (see Appendix B of the Instructional Handbook for Formal Inspections).

�Prepare Unit Tests
Overview
In this activity, unit test cases, preparations, and procedures are developed and documented.
Roles and Responsibilities
The software developer prepares the unit tests.
The software engineering manager verifies the test cases, preparations, procedures, and data.
Controls
The MIL-STD-498 Software Test Description (STD) Data Item Description (DID) (see Appendix E), which provides the format for documenting the unit test cases, preparations, and procedures.
Inputs
The MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) with the detailed design for code units (see activity 3.2.3 Develop Detailed Design).
Procedures
It is suggested that the STD be used to document the information gathered in this activity. The STD is designed for qualification testing, but it also can be applied to unit testing.
1) For each software unit, perform subactivity 3.2.4.2.1 Describe Unit Test Cases.
2) For each unit test case, perform subactivities 3.2.4.2.2 Describe Unit Test Preparations and 3.2.4.2.3 Describe Unit Test Procedures and Data.
3) Upon completing steps 1 and 2, the software developer completes the appropriate sections of the Promotion Notification Form (PNF) (see Appendix C) and submits it, along with the STD, to the software engineering manager.
4) The software engineering manager reviews the test cases, preparations, procedures, and data in the STD(s) and, if they are satisfactory, completes the appropriate sections of the PNF, and submits it to the software configuration management (SCM) organization.
Outputs
Unit test cases, preparations, procedures, and data documented in the Test Preparations and Test Descriptions sections of the (unit-level) STD, and that are checked by the software engineering manager.
A PNF submitted to the SCM manager.
�Describe Unit Test Cases
Overview
Based upon the requirements allocated to the unit, as documented in the software unit’s design, a set of test cases, including black box and white box testing, is formulated. Each test case includes inputs, expected results, and evaluation criteria.
Roles and Responsibilities
The software developer formulates the test cases.
Controls
See parent activity 3.2.4.2 Prepare Unit Tests.
Inputs
The software requirements allocated to the unit as indicated in the Requirements Traceability section of the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) (see activity 3.2.3 Develop Detailed Design).
The MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) that specifies the requirements (see activity 3.2.1 CSCI Software Requirements Analysis).
Procedures
The steps below give basic guidance on formulating unit test cases, including the information that must be in the documentation. For a much more detailed discussion of test formulation, refer to “The Art of Software Testing” by Glenford J. Myers, 1979.
Each test case exercises the unit within a broad range of input parameters as follows:
Integer and real types are tested using characteristic values defined by the software developer. At a minimum, normal, boundary, and maximum conditions are tested.
Enumerated types are tested against each value in the type which impacts control flow within a body.
Composite types (i.e., arrays, records) are tested by exercising the components across their complete range.
Access types are tested by creating and destroying the expected maximum number of dynamically allocated objects.
If the complete range of inputs is not to be tested, provide rationale in the Test Description section of the MIL-STD-498 Software Test Description (STD) (see Appendix E), along with a description of the tested versus the non-tested sub-ranges.
Each test case exercises the software unit to provide all possible values in the range of each output parameter and return value, with respect to the unit’s behavior.
Unit testing is performed in a host environment whenever possible to selectively introduce technological complexity and risk. The host environment is sufficient for software units abstracted from the target hardware, especially when word sizes are the same between the host and target environments, and representation clauses which slice words are not used. The target environment is necessary for low-level hardware control units, such as device drivers. Simulators may drive inputs and outputs in the host or target environment. Other system components (i.e., higher-level software units or subsystems) being built may drive stand-alone tests where practical.
1) For each code unit, review the possible normal and off-normal inputs and outputs. Review the requirement(s) allocated to the unit and the unit functionality documented in the Requirements Traceability section of the SDD, and as detailed in the SRS.
2) For each test case, document the following in the Test Description section of the STD:
A) Identify the requirement(s) or design element(s) addressed by the test case, if applicable. For unit tests, the portion of the code which implements the specified requirement(s) or design element(s) -- as opposed to other requirement(s) or design element(s) -- is what will be tested.
B) Identify the means of control for the test sequence: manual, semi-automatic, or automatic.
C) Describe the test inputs. Include the input source, any timing or sequence considerations, and means of control. For critical units, such as critical control elements within embedded flight software, most of the items in the list should be documented. For less critical units, a few items should be documented based upon their perceived value. Also consider documenting information from the following list.
Range and accuracy of values (e.g., values in the following ranges: 0.0 to 10.0, 10.1 to 50.0, and 50.1 to 100.0, inclusive, accurate to one decimal place).
Whether the input data is real or simulated, and the input method.
How the data is used to test normal expected operation.
How the data is used to create overload, saturation, and other worst-case conditions.
How the data is used to test handling irregular/incorrect input.
D) Describe all expected results for the test case.
E) Describe criteria for evaluating test case results.
3) Check the test case for completeness. Are sufficient test cases identified to adequately verify the intended portion of the requirements/design and uncover any errors?
Outputs
Unit test cases defined and documented in the Test Description section of the STD.
�Describe Unit Test Preparations
Overview
In this activity, the preparations necessary to execute each unit test are determined and documented in the MIL-STD-498 Software Test Description (STD) (see Appendix E).
Roles and Responsibilities
The software developer determines and documents the unit test preparations.
Controls
The software engineering environment defined in the Establish a Software Development Environment section of the MIL-STD-498 Software Development Plan (SDP) Data Item Description (DID) (see Appendix E).
Inputs
Unit test case(s) (see activity 3.2.4.2.1 Describe Unit Test Cases).
Procedures
For each test case, sequentially perform the following steps:
1) Describe any necessary hardware preparation to execute the test. Information may include: specific hardware to be used; precise instructions to make hardware ready; switch settings and cabling; and one or more diagrams to show the setup, control, or data paths.
2) Describe software and data preparations necessary to execute the test. This may include storage locations and preparations for the items under test, support software such as simulators and test drivers, and test data.
3) Identify any other preparations necessary to perform the test.
4) Record all test preparations in the Test Preparation section of the STD.
Outputs
Unit test preparations for the input test case(s) that are fully defined and recorded in the Test Preparation section of the (unit-level) STD.

�Describe Unit Test Procedures and Data
Overview
In this activity, the procedures to be followed and data to be used are developed for each unit test case. The test procedures consist of steps to initiate, perform, and collect test data.
Roles and Responsibilities
The software developer develops the unit test procedures.
Controls
The software engineering environment defined in the Establish a Software Development Environment section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
Unit test cases (see activity 3.2.4.2.1 Describe Unit Test Cases).
Unit test preparations (see activity 3.2.4.2.2 Describe Unit Test Preparations).
Procedures
Before following the steps in this activity, the software developer reviews the software environment defined in the Establish a Software Development Environment section of the SDP, and the unit test preparations. For each test case, the software developer sequentially performs the following steps:
1) List the sequence of steps to initiate and perform the test case, and collect any data necessary for test case analysis. For each step, if appropriate, include alternative actions, expected intermediate results, and evaluation criteria. Consider the following guidance:
A) Detail each test procedure to a level it can be repeated, if necessary, by a software developer other than the author, who is familiar with the unit and unit test environment.
B) List a step without detail if performance is obvious.
C) Refer (rather than duplicate) to a previously defined step sequence if identical or similar to the present sequence.
D) Include any necessary specific addresses, such as start or data addresses for flight or other embedded software.
E) Refer to blocks of code or paths as necessary for white box testing.
F) Use engineering judgment to decide whether to describe specific keystrokes and mouse clicks to be tested or commands and data at a higher abstraction level for software with a user interface.
2) Establish the source of the input data carrying out the test case if this was not done in activity 3.2.4.2.1 Describe Unit Test Cases. Depending upon the circumstance, this is a listing of manually-entered data, a description of automatically generated data (e.g., a randomly generated sequence of numbers in real time), or data encoded in a file for automatic input.
3) Document the procedures and input data sources in the Test Procedure section of the MIL-STD-498 (unit-level) Software Test Description (STD) (see Appendix E).�Outputs
Unit test procedures and data for the unit test case(s) documented in the Test Procedure section of the STD.
�Test Unit
Overview
In this activity, a software unit is tested according to its unit test cases and the corresponding test procedures.
Roles and Responsibilities
The software developer performs the unit tests.
Controls
The MIL-STD-498 Software Test Report (STR) Data Item Description (DID) that may be used for recording test results.
The units test cases, test preparations, test data, and procedures documented in the MIL-STD-498 (unit-level) Software Test Description (STD) (see Appendix E).
Inputs
The inspected unit to be tested (see activity 3.2.4.1 Implement Software Unit).
Procedures
It is suggested that the STR be used to document the information gathered in this activity. This STR is designed for qualification testing, but can be applied to unit testing.
1) Set up and execute each test case according to the unit’s STD.
2) Record pertinent observations in the Detailed Test Results section of the STR. Record any decisions made during test execution, such as alternate procedural paths taken. Record any variation between the documented cases/procedures and actual steps taken to perform the test in the Deviations from Test Cases/Procedures section of the STR. When possible, include copies of error tracebacks for embedded flight and ground software, and the frame trace for embedded flight software. A chronological record of the test events is kept and recorded in the Test Log section of the STR.
For flight software, ensure that each intended function is met and no data corruption or unwanted side effects occurred.
Example:
The frame trace includes a sequence of Xs associated with each memory bus line (BE0-4) indicating the amount of data written to memory during a processor’s instruction cycle. The intent may be to write a single byte, but a data word or longword is written instead. This is reflected by two Xs instead of one on that frame’s trace. Conversely, intended data may not be written at all, even though the proper instructions are executing. The trace may show that the chip enable (CE) line is inactive, inhibiting write to memory. Note: the frame trace cannot show every data flow or execution condition because the emulator can intercept only data flowing to or from the processor. For example, register-to-register moves do not appear on the frame trace because the moves occur within the processor, and does not involve the emulator.
�Outputs
The unit test results recorded in the Detailed Test Results section of the STR.
The tested unit.
�Analyze Unit Test Results
Overview
In this activity, unit test results are analyzed to establish success or failure, and determine resulting actions.
Roles and Responsibilities
The software developer analyzes and records all unit test results.
Controls
The MIL-STD-498 Software Test Report (STR) Data Item Description (DID) (see Appendix E).
The project’s Software Configuration Management Plan (SCMP) documenting the change control process.
Inputs
The unit test results in the Detailed Test Results section of the STR (see activity 3.2.4.3 Test Unit).
The tested unit to be reviewed in the results analysis (see activity 3.2.4.3 Test Unit).
Procedures
It is suggested that the STR be used to document the information gathered in this activity. This STR is designed for qualification testing, but can be applied to unit testing. For each test case:
1) Determine if the unit passed or failed based on result expectations in the test case descriptions and test observations. Record the pass or fail result in the Detailed Test Results section of the STR.
2) Analyze each failure by looking at the test results and test unit source code, and record the fault information (using the guidance provided in Table 3.2.4.4-1) in the Problems Encountered section of the STR. Initiate revisions or corrective actions accordingly.
Table 3.2.4.4-1. Fault Information
Problem Encountered�Corrective Action��A fault in a test case, test procedure, or test data�Correct the fault, record the fault correction, and rerun the test.��A fault in executing a test procedure�Rerun the incorrectly executed procedure.��A fault in the test environment (e.g., an anomaly in emulator software)�(1) Correct the environment, record the correction, and rerun the test, or (2) note a work-around and rerun the test.��A fault in the unit implementation�Note the fault. Correct the unit by repeating appropriate implementation and unit testing subactivities.��A fault in the unit design�Note the fault. Initiate corrective action to repeat design activities in accordance with the project’s SCMP.��3) After the software unit passes all unit tests and the results/analyses are recorded, submit the unit and the STR (if control is required) to the software configuration management (SCM) organization for promotion in accordance with the SCMP. The software developer completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C), and submits it to the software engineering manager for approval, signature, and submission to the SCM organization.
Outputs
Unit test results and analysis recorded in the Detailed Test Results section of the (unit-level) STR and submitted for promotion.
The PNF submitted to the software engineering manager.
The validated units certified through testing and submitted to the SCM organization for promotion.
�Unit Integration And Testing
Overview
In this activity, the software units that make up the computer software configuration item (CSCI) are integrated and informally tested. The result is a CSCI matching its software design and allocated requirements.
Roles and Responsibilities
The software developer builds progressive executables and performs integration testing.
Controls
See parent activity 3.2. Perform Software Development.
Inputs
Two or more validated software units (e.g., Ada packages, stand-alone procedures, or stand-alone tasks) or integrated collections of units that were individually tested and are now ready to be integrated (see activity 3.2.4 Software Implementation And Unit Testing).
The MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) documenting the interactions and compilation order for the code units (see activity 3.2.3 Develop Detailed Design).
Procedures
The goal is an orderly integration of code units by first integrating single units (e.g., packages, tasks, main procedures) with one another, then integrating units together that are, themselves, integrated collections of units, and continuing until the entire CSCI is integrated.
Information on the compilation order and unit dependencies is in the Concept of Execution section of the (Detailed) SDD.
Informal integration tests are conducted after the software modules complete unit-level testing (see activity 3.2.4 Software Implementation And Unit Testing). The objectives are to continue the bottom-up software integration begun during unit testing (when collections of individual compilation units, known as “modules,” are built and tested) and provide an audit trail of test data sufficient to demonstrate that the software performs to its integrated design level prior to formal CSCI qualification testing (see activity 3.2.6 CSCI Qualification Testing). As each subordinate unit is integrated into the parent software unit, operational interfaces and processes are tested using nominal, extreme, and erroneous input values, and are monitored to verify processing, error detection/recovery, and appropriate error identification. The last integration of each CSCI is accompanied by testing which parallels the formal qualification testing.
Iterate in sequence through the following subactivities for each unit collection to be integrated. Note: activity 3.2.5.1 Prepare for Unit Integration and Testing may be started as soon as the (Detailed) SDD is complete.
1) 3.2.5.1 Prepare For Unit Integration And Testing. In this activity, the unit integration test procedures and cases are developed.
2) 3.2.5.2 Perform Unit Integration And Testing. In this activity, the units are integrated and tested.
3) 3.2.5.3 Analyze And Record Unit Integration And Test Results. This activity checks the integration test results.
Outputs
The integrated CSCI.
The integration test results as documented in the Detailed Results section of the MIL-STD-498 (integration-level) Software Test Report (STR) (see Appendix E).
The integration test cases, procedures, and data documented in the Test Preparations and Test Descriptions sections of the MIL-STD-498 (integration-level) Software Test Description (STD) (see Appendix E).
�Prepare For Unit Integration And Testing
Overview
In this activity, the integration test cases are designed and described, and the test procedures and data are developed.
Roles and Responsibilities
The software developer performs all preparation activities for unit integration testing.
Controls
The MIL-STD-498 Software Test Description (STD) Data Item Description (DID) (see Appendix E).
Inputs
The Concept of Execution section of the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) documenting the interactions and compilation order for the code units (see activity 3.2.3 Develop Detailed Design).
Procedures
It is suggested that the STD be used to document the information gathered in this activity. This STD is designed for qualification testing, but it can be applied to integration testing. To integrate two or more units, perform the following subactivities in sequence:
1) 3.2.5.1.1 Describe Integration Test Cases. In this activity, the test cases for integration testing are formulated based on the unit interactions and execution order defined in the SDD.
2) 3.2.5.1.2 Describe Integration Test Preparations. In this activity, the preparations necessary to perform each integration test case are defined and documented.
3) 3.2.5.1.3 Develop Integration Test Procedures. In this activity, the integration test procedures and data are defined and documented.
Outputs
The Test Preparations and Test Descriptions sections of the STD, which define the test cases, procedures, and preparations.

�Describe Integration Test Cases
Overview
In this activity, the test cases for integration testing are formulated. Each test case includes inputs, expected results, and evaluation criteria.
Roles and Responsibilities
The software developer formulates the test cases.
Controls
The Concept of Execution section of the MIL-STD-498 (Detailed) Software Design Description (SDD) (see Appendix E) defining the compilation order and describing the units to be integrated.
Inputs
Test cases from previous projects to be reused during integration testing (see activity 4.2 Maintain the Organization’s Assets).
Procedures
Early integration testing should be performed in a host environment to selectively introduce technological complexity and risk, while reducing the overhead of preparing and executing the tests. The host environment is sufficient for threads (e.g., message-passing threads) whose execution is removed from the target hardware, especially when word sizes are the same between host and target environments, and no representation clauses slice words. The target environment is necessary for specific device control tests. Simulators may drive inputs and outputs in the host or target environment.
1) Identify the units to be integrated, based on the compilation order and relationship between the units as documented in the Concept of Execution section of the (Detailed) SDD.
For steps 2 through 4, all or part of existing tests may be substituted, where applicable, for developing tests. Existing tests may come from previous versions of the same software.
2) Identify the integration tests to be done, where each test is a logically-related collection of test cases. Label each test with a descriptive name that indicates the test’s objective, or an additional notation may be made describing the test’s objective.
Example:
An early integration test is: “Abstract Data Type (ADT) Interface Test” for testing data integrity and correctness of calls from an application package to a lower-level ADT. An example of a later integration test is: “Command Thread Test” for testing an end-to-end instrument commanding thread.
3) Identify test cases to be performed for each test. Identify the test case by a descriptive name (e.g., “Queue Overflow/Underflow” within “ADT Interface Test” above; “Power-On Command” within “Command Thread Test” above).
4) Document the following in the Test Description section of the MIL-STD-498 (integration-level) Software Test Description (STD) (see Appendix E):
A) A brief statement of the test case rationale.
B) Means of controlling for the test sequence: manual, semi-automatic, or automatic.
C) Describe the test inputs. Include the input source, timing or sequence considerations, and means of control. Also, consider information from the following list. For critical units, such as critical control elements within embedded flight software, most items in the list are included. For less critical units, a few items are included based upon their perceived value.
Additional data information, such as range of values and accuracy.
Whether the input data is real or simulated, and the input method.
How the data is used to test normal expected operation.
How the data is used to create overload, saturation, and other worst-case conditions.
How the data is used to test handling of irregular/incorrect input.
D) Describe all expected test case results.
E) Describe criteria for evaluating test case results.
F) Check for completeness. Are sufficient test cases identified to adequately verify the intended portion of the requirements/design, and to uncover any errors?
Outputs
The integration test cases defined and recorded in the Test Description section of the (integration-level) STD.
�Describe Integration Test Preparations
Overview
In this activity, the preparations necessary to perform each integration test case are defined and documented.
Roles and Responsibilities
The software developer determines and documents the integration test preparations.
Controls
The development and test environment described in the Establishing a Software Development Environment section of the MIL-STD-498 Software Development Plan (SDP) (see Appendix E).
Inputs
Integration test case(s), as documented in the Test Description section of the MIL-STD-498 (integration-level) Software Test Description (STD) (see activity 3.2.5.1.1 Describe Integration Test Cases).
Test preparations for reuse from previous versions or iterations (see activity 4.2 Maintain The Organization’s Assets).
Procedures
Note: The following information for each test case is documented in the Test Preparations section of the integration-level STD. If possible, test preparations from previous versions or iterations are reused.
1) Identify and describe hardware preparation, if any, necessary to execute the test case. The overall development and test environment is described in the Software Development Environment section of the SDP. Information may include: specific hardware to be used; precise instructions to make hardware ready; switch settings and cabling; and one or more diagrams to show the setup, control, or data paths.
2) Identify and describe software and data preparations necessary to execute the test case. This may include storage locations and preparations for the items under test, support software such as simulators and test drivers, and the test data.
3) Identify any other preparations necessary to perform the test case.
Outputs
The fully established integration test preparations for the test case(s) recorded in the Test Preparation section of the (integration-level) STD.
�Develop Integration Test Procedures
Overview
In this activity, the integration test procedures to be followed and the data to be used are defined and documented for each integration test case. A test procedure consists of the steps to be followed in initiating and performing the test, and collecting test data.
Roles and Responsibilities
The software developer defines the integration test procedures and data.
Controls
See parent activity 3.2.5.1 Prepare For Unit Integration And Testing.
Inputs
The integration test cases documented in the Test Description section of the MIL-STD-498 (integration-level) Software Test Description (STD) (see Appendix E) (see activity 3.2.5.1.1 Describe Integration Test Cases).
Pre-existing test procedures for reuse, if applicable (see activity 4.2 Maintain The Organization’s Assets).
Procedures
Reusing any existing test procedures is strongly recommended because many test cases may be very similar.
1) For each test case, list the sequence of steps to initiate and perform the test case, and to collect any data needed for test case analysis. For each step, if appropriate, include alternative actions, expected intermediate results, and evaluation criteria. Consider the following guidance:
A) Detail each test procedure to a level that it can be repeated, if necessary, by a software developer other than the author, who is familiar with the software and the software development environment.
B) List a step without detail if performance is obvious.
C) Refer (rather than duplicate) to a previously defined sequence of steps if it is identical or similar to the present sequence.
D) Include any necessary specific addresses, such as start or data addresses or addresses for embedded software.
E) For software involving a user interface, describe text entry only to the necessary level based on engineering judgment. It is usually sufficient to describe commands and data to be entered rather than detailing specific key strokes and mouse clicks.
The test procedures developed are documented in the Test Procedure section of the (integration-level) STD.�Outputs
Integration test procedures for the established test case(s) that are adequately defined and recorded in the Test Procedure section of the (integration-level) STD.
�Perform Unit Integration And Testing
Overview
In this activity, an executable image containing the units to be integrated is built, the applicable tests are run against the image, and the results are recorded and evaluated.
Roles and Responsibilities
The software developer builds the executable image, performs the testing, and records the results.
Controls
The applicable test cases and procedures that are complete and recorded in the MIL-STD-498 (integration-level) Software Test Description (STD) (see Appendix E).
The (qualification-level) STD for use as the final set of integration tests.
The MIL-STD-498 Software Test Report (STR) Data Item Description (DID) (see Appendix E) for recording the test results.
Inputs
Validated units to be integrated that were unit tested (see activity 3.2.4 Software Implementation And Unit Testing).
Integrated software units from previous iterations of this activity.
Procedures
It is suggested that the STR be used to document the information gathered in this activity. This STR is designed for qualification testing, but can be applied to integration testing. The following steps are performed in sequence:
1) Build an executable image using the code units to be integrated. The image is built from unit-tested modules, plus any test drivers, simulators, main procedure, etc., which must be bound to unit-test modules.
2) Perform the following for each test case:
Set up and execute each test case according to its procedure (integration-level) STD.
Record pertinent observations in the Detailed Test Results section of the STR. Record any decisions made during test execution, and any variations between the documented cases/procedures and the actual test steps performed. Record any anomalies. When possible, include copies of error tracebacks for embedded software, and the frame trace for embedded flight software. These may be included as attachments to the STR.
3) Run the test cases in the (qualification-level) STD to verify the integration was successful and complete when all software units are integrated into the complete computer software configuration item (CSCI).�Outputs
The integrated collection of software units produced becomes an input to further iterations of the unit integration activity. The last integrated collection of units is the entire CSCI.
The test results documented in the Detailed Test Results section of the STR.
�Analyze And Record Unit Integration And Test Results
Overview
In this activity, the integration test results are analyzed to establish success or failure, and determine resulting actions.
Roles and Responsibilities
The software developer performs the analysis and records the results.
Controls
The Configuration Control section of the Software Configuration Management Plan (SCMP) (see Appendix E), which documents how Software Promotion Notification Forms (PNF) (see Appendix C) are submitted.
The applicable completed test cases and procedures recorded in the MIL-STD-498 (integration-level) Software Test Description (STD) (see Appendix E).
The (qualification-level) STD used as the final set of integration tests.
The MIL-STD-498 Software Test Report (STR) Data Item Description (DID) (see Appendix E) which provides a format for recording the test results analysis.
Inputs
Integrated software units (see activity 3.2.5.2 Perform Unit Integration And Testing).
Results from the integration testing as documented in the Detailed Test Results section of the STR (see activity 3.2.5.2 Perform Unit Integration And Testing).
Procedures
Note: It is suggested that the STR be used to document the information gathered in this activity. This STR was designed for qualification testing, but can be applied to integration testing. For each test case:
1) Determine if the integrated units passed or failed based on the expected results documented in the (integration- or qualification-level) STD and the documented test observations. Record the pass or fail results in the Detailed Test Results section of the STR.
2) Analyze each failure and record the fault information in the Problems Encountered section of the STR. A Software Trouble Report is then written and submitted to the software configuration management (SCM) organization.
3) Check for complete integration. Evaluate whether additional tests are necessary and, if so, initiate their design and execution (i.e., repeat activity 3.2.5.1 Prepare for Unit Integration and Testing).
4) Summarize the test results, giving an overall assessment of the software tested, any test environment impacts, or recommended improvements. Document this information in the Overview of Test Results section of the STR.
5) After the integrated units passed all integration tests and the results/analyses are recorded, submit the integrated computer software configuration item (CSCI) and the STR (if control is needed) for promotion in accordance with the SCMP. The software developer completes the appropriate sections of the PNF, and submits it to the software engineering manager for approval and submission to the SCM staff.
Outputs
Integration test results as documented in the Detailed Test Results section of the STR.
The integrated CSCI.
The PNF submitted to the SCM organization.
Any Software Trouble Reports submitted to the SCM organization.

�CSCI Qualification Testing
Overview
Computer software configuration item (CSCI) qualification testing validates that a CSCI meets its allocated requirements. In many situations (e.g., embedded systems), this testing cannot be done without first completing the hardware integration (see activity 3.3.1 Participate in Hardware/ Software Integration). CSCI qualification testing should be performed to the fullest possible extent on the target computer system. An independent tester or test group should perform the qualification testing, rather than the (software) developer of the design or implementation of the CSCI under test.
Roles and Responsibilities
The software tester(s) performs all qualification test activities.
Controls
The MIL-STD-498 Software Test Plan (STP) (see Appendix E) developed in activity 1.1.3 Plan Software Testing, specifying the software test environment, schedules, and roles and responsibilities of the participating personnel.
Inputs
The MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) specifying the requirements allocated to the CSCI (see activity 3.2.1 CSCI Software Requirements Analysis).
The integrated CSCI which passed all integration tests (see activity 3.2.5 Unit Integration and Testing).
Any test cases and procedures for reuse from previous iterations (see activity 4.2 Maintain The Organization’s Assets).
Procedures
Prior to performing the subactivities in this activity, the software testers review the STP which provides details of the planned software test environment, schedules, and roles and responsibilities of the participating personnel.
Reusing test cases and procedures is highly recommended when possible because qualification testing (like integration and unit testing) sometimes must be repetitively performed.
The software tester(s) perform the following subactivities in sequence:
Subactivity 3.2.6.1 Prepare for Qualification Testing may be started as soon as the software requirements start to be defined.
1) 3.2.6.1 Prepare for Qualification Testing. In this activity, the test cases, environment, and steps to be followed are developed and documented in the MIL-STD-498 Software Test Description (STD) (see Appendix E). The SRS, which contains a complete list of the allocated software requirements, is used to verify complete test coverage.
2) 3.2.6.2 Verify Qualification Tests. In this activity, the STD is formally inspected.
3) 3.2.6.3 Perform Qualification Testing. In this activity, the integrated CSCI is tested.
4) 3.2.6.4 Analyze and Record Qualification Test Results. In this activity, the test results are analyzed and the results are recorded in the MIL-STD-498 Software Test Report (STR) (see Appendix E). Failures are reported to the configuration management (CM) staff via Software Trouble Reports (see Appendix C).
Outputs
The inspected qualification test cases, procedures, preparation instructions, and test data used to perform the testing that are documented in the Test Preparations and Test Descriptions sections of the STD.
The qualification test results documented in the Detailed Test Results Section of the Software Test Report
The software that passed all qualification tests.
Software Trouble Reports documenting qualification test failures.
�Prepare For Qualification Testing
Overview
In this activity, the qualification test cases are designed and documented, and the test procedures and data are developed for qualification testing and documented in the MIL-STD-498 Software Test Description (STD) (see Appendix E).
Roles and Responsibilities
The software testers develop and document the test cases, procedures, and data.
Controls
The STD Data Item Description (DID) providing the format for recording the test cases, procedures, and data.
Inputs
The MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) (see activity 3.2.1 CSCI Software Requirements Analysis).
Qualification test cases, procedures, or preparation instructions from previous software versions or iterations (see activity 4.2 Maintain the Organization’s Assets).
The inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections) documenting the defects found during the formal inspection (see activity 3.2.6.2 Verify Qualification Tests) in the STD.
Procedures
Any pre-existing qualification test cases, procedures, and test preparation instructions may be reused if the computer software configuration item (CSCI) consists of or contains software from previous versions, iterations, or projects. However, the following subactivities should be reviewed to determine changes or additional material needed to prepare for the qualification testing.
If defects are being corrected based upon those on the inspection defect list, the software tester(s) should review each subactivity to verify that the corrections made do not impact other STD sections.
Perform the following subactivities in sequence:
1) 3.2.6.1.1 Describe Test Cases. In this activity, the test cases are developed. The SRS, which contains a complete list of the allocated software requirements, is used to verify complete test coverage.
2) 3.2.6.1.2 Describe Test Preparations. In this activity, the test environment and setup are defined.
3) 3.2.6.1.3 Develop Test Procedures. In this activity, the test steps are developed.
Outputs
The completed qualification tests, consisting of test cases, procedures, and data, which are documented in the STD.
�Describe Test Cases
Overview
In this activity, the tests and individual test cases for qualification testing are formulated. A test is a related collection of test cases. Each test case includes inputs, expected results, and evaluation criteria.
Roles and Responsibilities
The software testers formulate and document the test cases.
Controls
See parent activity 3.2.6 CSCI Qualification Testing.
Inputs
The MIL-STD-498 Software Requirements Specification (SRS) (see Appendix E) documenting the requirements that the software will be tested against (see activity 3.2.1 CSCI Software Requirements Analysis).
Procedures
The steps below may occur iteratively (because identifying a new test case may lead to discovering a new test).
1) Identify the tests to be done. Derive tests from the set of requirements for the computer software configuration item (CSCI) as documented in the SRS. Assign each test a descriptive name indicating the test’s objective. This information may be in the Planned Test section of the MIL-STD-498 Software Test Plan (STP) (see Appendix E).
2) Identify test cases (by descriptive names) to be performed for each test.
3) For each test case:
A) Include a brief statement of the rationale for this test case.
B) Identify the control for the test sequence: manual, semi-automatic, or automatic.
C) Describe the test inputs. Include the input source, timing or sequence considerations, and means of control. Include all applicable items from the following list:
Further information about the data, such as range of values and accuracy.
Whether the input data is real or simulated, and the input method.
How the data is used to test normal, expected operation.
How the data is used to create overload, saturation, and other worst-case conditions.
How the data is used to test handling of irregular/incorrect input.
D) Describe all expected test case results.
E) Describe criteria for evaluating results.
4) Document all test information developed in the Test Description section of the STD. Check for completeness. Are sufficient tests and test cases identified to adequately uncover noncompliance with requirements? Are all testable requirements addressed?
Outputs
The defined qualification tests and test cases recorded in the Test Description section of the STD.

�Describe Test Preparations
Overview
In this activity, the preparations necessary to execute each qualification test are determined and documented.
Roles and Responsibilities
See parent activity 3.2.6 CSCI Qualification Testing.
Controls
See parent activity 3.2.6 CSCI Qualification Testing.
Inputs
Qualification tests and test cases identified and documented in the Test Description section of the MIL-STD-498 Software Test Description (STD) (see Appendix E) (see activity 3.2.6.1.1 Describe Test Cases).
Procedures
1) Review the identified tests and test cases to determine the hardware and software preparations that will be necessary to perform the tests. The software tester(s) also reviews the Software Test Environment section of the MIL-STD-498 Software Test Plan (STP) (see Appendix E) for descriptions of the hardware and software test tools and platforms that will be used during testing.
2) Identify and describe any hardware preparations necessary to execute the tests. Information should include: specific hardware to be used; precise instructions to make the hardware ready; switch settings and cabling; and one or more diagrams to show the setup, control, or data paths.
3) Identify and describe software and data preparations necessary to execute the test. This may include storage locations and preparations for the items under test, support software such as simulators and test drivers, and test data.
4) Identify any other preparations necessary to perform the test.
5) Document the above information in the Test Preparation section of the STD.
Outputs
The fully defined qualification test preparations recorded in the Test Preparation section of the STD.
�Develop Test Procedures
Overview
In this activity, the procedures for each qualification test case are created. Each test procedure consists of sequential steps to initiate and perform the test case, and collect test data.
Roles and Responsibilities
See parent activity 3.2.6 CSCI Qualification Testing.
Controls
See parent activity 3.2.6 CSCI Qualification Testing.
Inputs
Qualification tests and test cases (see 3.2.6.1.1 Describe Test Cases) documented in the Test Description section of the MIL-STD-498 Software Test Description (STD) (see Appendix E).
Procedures
For each test case:
1) List the sequence of steps to initiate and perform the test case, and collect any data necessary for test case analysis. The level of detail provided enables the software tester(s) to specify expected results and compare them to actual results. For most software, each step includes a logically-related series of keystrokes or other actions. The test procedure contains the following:
Test operator actions and equipment operation(s) required for each step.
Expected results and evaluation criteria for each step.
Identification of which test procedure step(s) address which requirement.
Actions to follow after software failure.
Procedures to reduce test data and analyze test results.
2) Document all test procedures in the Test Procedure section of the STD.
Outputs
The completed qualification test procedures documented in the Test Procedure section of the STD.
�Verify Qualification Tests
Overview
In this activity, the MIL-STD-498 Software Test Description (STD) (see Appendix E) is formally inspected.
Roles and Responsibilities
The software test manager selects the inspection team.
The software tester(s) serve on the inspection team.
Controls
The Instructional Handbook for Formal Inspections documenting the formal inspection procedures.
Inputs
The STD to be inspected (see activity 3.2.6.1 Prepare for Qualification Testing).
Procedures
1) The software tester(s) notifies the software test manager that the STD is ready for inspection.
2) The software test manager selects an inspection team from available test personnel.
3) The assigned team performs a formal inspection as detailed in the Instructional Handbook for Formal Inspections, using the checklist for the STD. All defects found are documented on the inspection defect list (see Appendix B of the Instructional Handbook for Formal Inspections).
4) After the STD passes the formal inspection, the software tester completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C) and submits it, with the STD, to the configuration management (CM) staff.
Outputs
The STD that successfully passed the formal inspection.
The list of defects found during the formal inspection.
The completed PNF.

�Perform Qualification Testing
Overview
In this activity, the computer software configuration item (CSCI) qualification test cases are run, and the results are recorded.
Roles and Responsibilities
The software tester(s) performs all qualification test activities.
The software test manager, software quality assurance (SQA) manager, and software project manager may witness the qualification testing.
The software developer(s) may be present to help rebuild the CSCI.
Controls
The MIL-STD-498 Software Test Report (STR) Data Item Description (DID) (see Appendix E).
The inspected MIL-STD-498 Software Test Description (STD) (see Appendix E), with the approved qualification test cases, procedures, and data for the CSCI.
Inputs
The integrated CSCI to be tested (see activity 3.2.5 Unit Integration And Testing).
Procedures
1) The CSCI must be completely rebuilt from its source code, starting with recreating the Ada library(ies). This ensures the image can be cleanly built, incorrect source code or source code of the wrong version can be detected, the present source code constitutes closure in the dependency structure (i.e., Ada “with” clauses), and there is no dependence on links to extraneous external libraries. The software tester performs the rebuild according to the software developer’s instructions. The executable is downloaded to the target computer platform, if applicable.
2) For a new or heavily modified CSCI to be tested, run all test cases. In principle, the entire set of qualification tests should be rerun; however, this is normally too expensive. Thus, the software tester must identify the dependencies between software parts which may have been impacted by the change, and a subset of the tests which should be rerun. The SQA organization should witness all activities of the software tester.
For each test case, perform the following substeps:
A) Set up and execute the test case according to its documented test procedure as stated in the STD. The software test manager, who directs the activities of the software testers, may witness the qualification testing as necessary.
B) Record pertinent observations in the Test Results section of the STR. Record any decisions made during test execution, and any variation between the documented cases/procedures and steps taken to perform the test. Record any anomalies. When possible, include copies of the frame trace for embedded flight software, and error tracebacks for ground software.�Outputs
The test results recorded in the Test Results section STR.
The qualified software (if the software passed all qualification tests).�
Analyze And Record Qualification Test Results
Overview
In this activity, the qualification test results are analyzed and formally recorded in the MIL-STD-498 Software Test Report (STR) (see Appendix E) to objectively determine the adequacy of the software being tested and the tests, themselves.
Roles and Responsibilities
The software tester analyzes and records the qualification test results.
Controls
The STR Data Item Description (DID), which provides the format for recording the test results.
The inspected MIL-STD-498 Software Test Description (STD) (see Appendix E) containing expected results, test cases, and procedures.
The project’s Software Configuration Management Plan (SCMP) (see Appendix E) documenting the procedures for submitting Software Trouble Reports (see Appendix C).
Inputs
Results from qualification testing documented in the Software Test Report (see activity 3.2.6.3 Perform Qualification Testing).
Procedures
1) Complete the introductory sections of the Software Test Report as follows:
A) In the Scope section, fully identify the system and computer software configuration item (CSCI) that were tested, including any version and release numbers. The information should be sufficient to uniquely identify the software.
B) In the Referenced Documents section, list the title, date, revision, and document number (if applicable) of all documents referenced in this report. Include formally baselined documents, such as the MIL-STD-498 Software Requirements Specification (SRS) (Appendix E), as well as any informal documents if referenced.
2) Analyze each failure and record the fault information according to Table 3.2.4.4-1 in activity 3.2.4.4 Analyze Unit Test Results. If the test failed, submit a completed Software Trouble Report detailing the failure. The procedure for writing and submitting a Software Trouble Report should be documented in the project’s SCMP.
3) Complete the Detailed Test Report section of the Software Test Report for each test case. Describe the detailed results for each test. A “test” means a related collection of test cases.
A) Identify the test.
B) Summarize test results. List the completion status of each test case associated with the test. Use the terminology “all results as expected,” “problems encountered,” and “deviations required,” as necessary. For test cases whose completion status are not “as expected,” include the following paragraphs for details.
Problems encountered. If this information duplicates a Software Trouble Report, simply reference the Software Trouble Report. Otherwise, in subparagraphs, identify each test case in which one or more problems occurred, and provide a (an):
Brief description of the problem(s).
Identification of the test procedure step(s) in which they occurred.
Reference to the Software Trouble Report and any associated data (e.g., tracebacks), as applicable.
Number of times the procedure or step was repeated in attempting to correct the problem(s), and the outcome of each attempt.
Test steps or return points where tests are resumed for re-testing.
Deviations from test cases/procedures. For any deviations from test cases or test procedures, include the following subsection for each test case:
Test case identification.
Deviation description that may contain answers to the following questions. Were the procedural steps followed? Was there a substitution for required test equipment? Deviations may be shown by including red-lined (i.e., edited or revised) test procedures.
Rationale for the deviation(s).
Assessment of the deviation’s impact on the test case’s validity.
4) Complete the Overview of Test Results section of the STR as follows:
A) Provide an overall assessment of the software as demonstrated by the test results in the report. This indicates whether the software is ready to be declared operational, ready to be declared operational pending corrections (reference the Software Trouble Reports to be addressed), or needs significant rework.
B) Assess the manner in which the test environment may be different from the operational environment, and the effect of this difference on the test results.
C) Recommend improvements in design, operation, or testing of the software tested.
5) Create an appendix containing a copy of each Software Trouble Report, and a summary table of Software Trouble Reports sorted by severity.
6) When the Software Test Report is complete, the software tester completes the appropriate sections of the Software Promotion Notification Form (PNF) (see Appendix C), and submits it to the Software Configuration Management (SCM) organization. Copies also are submitted to the software engineering manager and software project manager.�Outputs
The completed Software Test Report, placed under configuration control, and submitted to the software engineering manager and software project manager.
The Software PNF.
Any completed Software Trouble Reports submitted to the SCM organization.
Software Development

�PAGE �

�PAGE �56�
Released February 5, 1997
	

