

SOFTWARE ENGINEERING & ANALYSIS LAB















INTRODUCTION



TO THE 



SOFTWARE ENGINEERING PROCESS GUIDEBOOK









Final

February 5, 1997



















�EMBED MSDraw���



















National Aeronautics and

Space Administration



Langley Research Center

Hampton, VA  23666

�
Revision History



Revision�
Date�
Description�
Approved�
�
Draft 0.1�
5 Feb 1996�
Volumes\Intro\Develop\Intro4.doc�
R. Parrish�
�
Draft 0.1a�
13 Sep 1996�
New material to reflect other volumes�
R. Parrish�
�
Final�
5  Feb 1997�
Final delivery�
R. Parrish�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


Special permission to reproduce SEI-93-TR-25 (1993) and the Capability Maturity Model for Software by Carnegie Mellon University, is granted by the Software Engineering Institute.

CMM(SM) and Capability Maturity Model(SM) are service marks of Carnegie Mellon University.

NO WARRANTY.  THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY OR RESULTS OBTAINED FROM USE OF THE MATERIAL.  CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

�

Some of the material in this document is from the Software Productivity Consortium (SPC), and is used, copied, modified, and distributed with permission in accordance with the following:



Copyright © 1992, 1993 Software Productivity Consortium Services Corporation, Herndon, Virginia.  Permission to use, copy, modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48CFR 227 and 252, and provided that the above copyright notice appears in all copies, and that both this copyright notice and this permission notice appear in supporting documentation.  This material is based in part upon work sponsored by the Advanced Research Projects Agency under Grant #MDA972-92-J-1018.  The content does not necessarily reflect the position or policy of the U.S. Government, and no official endorsement should be inferred.  The name Software Productivity Consortium shall not be used in advertising or publicly pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc.  SOFTWARE PRODUCTIVITY CONSORTIUM, INC. AND SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. 

�
Table of Contents





� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc347799259  � PAGEREF _Toc347799259 �1��

1.1 History and Background	� GOTOBUTTON _Toc347799260  � PAGEREF _Toc347799260 �1��

1.2 The Organization’s Software Process Definition	� GOTOBUTTON _Toc347799261  � PAGEREF _Toc347799261 �5��



2. Guidebook Organization And Content	� GOTOBUTTON _Toc347799262  � PAGEREF _Toc347799262 �7��

2.1 Software Management Volume	� GOTOBUTTON _Toc347799263  � PAGEREF _Toc347799263 �8��

2.2 Software Configuration Management Volume	� GOTOBUTTON _Toc347799264  � PAGEREF _Toc347799264 �8��

2.3 Software Development Volume	� GOTOBUTTON _Toc347799266  � PAGEREF _Toc347799266 �8��

2.4 Software Process Improvement Volume	� GOTOBUTTON _Toc347799267  � PAGEREF _Toc347799267 �9��

2.5 Appendices	9



3. Roles	10



4. Activity Format	� GOTOBUTTON _Toc347799270  � PAGEREF _Toc347799270 �12��



5. IDEF0 Diagrams	� GOTOBUTTON _Toc347799271  � PAGEREF _Toc347799271 �13��



6. Future Plans	16

6.1 Process Improvement Program	16

6.2 Software Engineering Process Guidebook	17

�



�
1.	INTRODUCTION

1.1	History and Background

After two decades of unfulfilled promises about productivity and quality gains from applying new software methodologies and technologies, industry and government organizations are realizing that their fundamental problem is the inability to manage the software process [DoD87].  The benefits of better methods and tools cannot be realized in the maelstrom of an undisciplined, chaotic project.  In many organizations, projects are often excessively late and double the planned budget [Siegel, 1990].  In such instances, the organization frequently is not providing the infrastructure and support necessary to help projects avoid these problems.

Even in undisciplined organizations, however, some individual software projects produce excellent results.  When such projects succeed, it is generally through the heroic efforts of a dedicated team, rather than through repeating the proven methods of an organization with a mature software process. In the absence of an organization-wide software process, repeating results depends entirely on having the same individuals available for the next project.  Success that rests solely on the availability of specific individuals provides no basis for long-term productivity and quality improvement throughout an organization.  Continuous improvement can occur only through focused and sustained effort towards building a process infrastructure of effective software engineering and management practices. 

The Software Engineering Institute (SEI) Capability Maturity Model (CMM) is based on knowledge acquired from software process assessments and extensive feedback from both industry and government.  By elaborating the maturity framework, a model has emerged that provides organizations with more effective guidance for establishing process improvement programs [CMU/SEI-93-TR-24].

More, better, faster, and cheaper are challenging words to all levels of management.  These are the same demands made in the marketplace, demands that led organizations to focus not only on product, but on process.

In 1920, after the introduction of the assembly line, product inspection controlled product quality.  This is sometimes called “inspecting in” quality.  Around 1960, Japan began a major effort to penetrate the global electronics market and adopted statistical, process-control methods to improve products.  Japan’s success drove most manufacturers to adopt similar techniques.  In the 1980s, attention shifted to improving the underlying process and product designs to achieve product improvement.  This latest approach is sometimes referred to as “building in” quality.

Some of the tried and tested contributions from the quality world influenced what are today’s best software engineering practices.  J. M. Juran defined a four-step approach to quality improvement [Juran, 1988].  W. E. Deming proposed a 14-point, organization-wide approach [Deming, 1986].  P. B. Crosby developed a quality management-maturity framework to identify where an organization stands in incorporating quality into its business practices [Crosby, 1979].  The key message from Juran, Deming, Crosby, and others is that long-term improvement can be attained only through systematic analysis and action.  In any business, the interaction of people, processes, and technologies affects development costs, schedules, and product quality.  Process management is a systematic approach to planning, managing, and improving product development and maintenance.  Incorporating these ideas and approaches, the Software Engineering Institute (SEI), funded by the Department of Defense (DoD), developed a conceptual framework called the “Capability Maturity Model (CMM) for Software.”  This model classifies software development organizations into five levels of process maturity (see Figure 1.1-1), and outlines an evolutionary path for improving the management of software activities.

 � EMBED Word.Picture.6  ���

Figure 1.1-1   The Five Levels of Software Process Maturity �(The labeled arrows indicate the type of process capability being institutionalized by the organization at each step of the maturity framework.)

The following paragraphs describe the characteristics of the five maturity levels and the primary process changes required to achieve each level.

SEI CMM Level 1 - The Initial Level

At the Initial Level, the organization typically does not provide a stable environment for developing and maintaining software.  When an organization lacks sound management practices, the benefits of good software engineering practices are undermined by ineffective planning and a reactive approach to software development.

The software process capability of Level 1 organizations is unpredictable because it changes as the work progresses (i.e., the process is ad hoc).  During a crisis, a project typically reverts to coding and testing.  As a result, schedules, budgets, functionality, and product quality also are generally unpredictable.  Performance rests on the skills, knowledge, and motivations of individuals, rather than on organizational capability.  Success entirely depends on having an exceptional manager and a seasoned and effective software team.  Occasionally, capable and forceful project software managers can withstand the pressures to take shortcuts in the software process; but when they leave the project, their stabilizing influence leaves with them.  Even a strong engineering process cannot overcome the instability created by the absence of sound management practices [CMU/SEI-93-TR-24].

SEI CMM Level 2 - The Repeatable Level

An effective process can be characterized as practiced, documented, enforced, trained, measured, and capable of being improved.  An organization at the Repeatable Level has institutionalized effective processes for managing software development.  These processes allow the organization to repeat successful practices developed in earlier projects.  Planning, tracking, and managing the software project are stable, and based on experience with similar software projects.  Realistic project commitments are based on the results observed on previous software projects and current project requirements.

A Level 2 organization is disciplined.  The project software manager tracks software costs, schedules, and functionality.  The software engineering staff identifies problems compromising project commitments as they arise.  The organization baselines software requirements and the products developed to satisfy them, thus, controlling their integrity.  Software project standards are defined, and the organization ensures these standards are faithfully followed.  The software project staff works with each of its subcontractors to establish a strong customer-supplier relationship [CMU/SEI-93-TR-24].

SEI CMM Level 3 - The Defined Level

At the Defined Level, a documented, standard process for developing and maintaining software across the organization integrates effective software engineering and management processes.  The CMM calls this process the organization's “standard software process.”  A software engineering process group (SEPG) or similar group monitors the organization's software process activities.  An organization-wide training program ensures that staff and managers have the knowledge and skills required to fulfill their assigned roles.

Each project team tailors the organization's standard software process to accommodate the project’s unique characteristics.  The CMM refers to this as the project's “defined software process.”  This process includes:  readiness criteria, inputs, standards, work procedures, verification mechanisms (e.g., peer reviews), outputs, and completion criteria.  Because the software process is well defined, management has good insight into each project’s technical progress.

The software process capability of a Level 3 organization is standard and consistent.  Software engineering and management activities are stable and repeatable, based on a common, organization-wide understanding of the activities, roles, and responsibilities in a defined software process.  Within established product lines, costs, schedules, and functionality are under control, and software quality is tracked [CMU/SEI-93-TR-24].

SEI CMM Level 4 - The Managed Level

At the Managed Level, the organization sets quantitative and qualitative goals for software products and processes; measures productivity and quality in important software process activities across all projects; collects the data in an organization-wide, software process database; and analyzes the data.  The measurements are well defined and consistent, forming the quantitative foundation for evaluating the project’s software processes and products.

Software projects control their products and processes by narrowing the variation(s) in their process performance to within acceptable, quantitative boundaries.  In a Level 4 organization, meaningful variations in process performance can be distinguished from random variation (noise), particularly within established software product lines.  The risks in moving along the learning curve of a new application are known and carefully managed.

The software process capability of a Level 4 organization is predictable because the process is measured and operates within quantitative limits, allowing the organization to predict trends in software process and product quality.  When the limits are exceeded, the organization corrects the situation.  Software products are of predictably high quality [CMU/SEI-93-TR-24].

SEI CMM Level 5 - The Optimizing Level

At the Optimizing Level, the entire organization is focused on continuous process improvement.  The organization identifies weaknesses and proactively strengthens the process to prevent defects.  Data on the effectiveness of the software process is used in cost-benefit analyses of new technologies and in proposed changes to the organization's standard software process.  Innovations that exploit the best software engineering practices are identified and disseminated throughout the organization.

Software project teams in Level 5 organizations analyze defects to determine their causes.  These teams evaluate and alter the software processes to prevent known types of defects from recurring, and then disseminate lessons learned to other projects. 

The software process capability of Level 5 organizations is continuously improving because  these organizations are striving to improve their process performance on every project.  Improvement consists of both incremental advances in the existing processes and innovations that use new technologies and methods [CMU/SEI-93-TR-24].

1.2	The Organization’s Software Process Definition

Software process definition is fundamental to achieving higher SEI CMM maturity levels.  This section discusses applying the organization’s software process definition, as described in this Guidebook, to individual projects.

At the organizational level, the standard software process is formally described, managed, controlled, and improved.  At the project level, the emphasis is on the tailoring and usability of the organization’s defined software process, and the value it adds to the project.  This Guidebook describes the fundamental elements that each project involved in software development is expected to incorporate into its defined software process.  The Guidebook also describes the relationships (e.g., ordering and interfaces) among these software process elements.  It establishes a consistent method of performing the defined software activities across the organization, which is essential for long-term stability and improvement.  Figure 1.2-1 (modified from the SEI CMM) depicts the relationship between this Guidebook and projects involving software engineering.

Each project has its own system requirements, constraints, and resources.  Some of those requirements are allocated to software. To accommodate these requirements, constraints, and resources, the project software manager may tailor the activities in this Guidebook, using the guidelines in the Software Management Volume.  The project software manager selects a software life cycle, and then develops the project’s defined software process by tailoring the organization’s standard software process for the project, and documenting the tailoring according to the guidance in activity 1.1.1.3 Define Software Development Process and its subactivities.  The project’s defined software process is documented in the Software Development Plan (SDP).  

This Guidebook is not meant to be a substitute for a project’s SDP which integrates an organization’s standard software process into a project’s defined software process.

� EMBED PowerPoint.Show.4  ���

Figure 1.2-1  Conceptual Software Process Framework Used In The Organization�(modified from the SEI CMM)

When the project is completed, its software products and lessons learned are placed in the software asset library for reuse or as a references for future software projects.  Software metrics are collected and stored in the metrics database.

Having common standards, methodologies, and formats for software products (as defined throughout this Guidebook) on multiple projects makes software reuse more feasible.  Reusing software products enables a project to reduce development time and cost, and supports long-term stability and process improvement.  Reuse also reduces the overall risk on a project because the cost and effort of reusing a component that was used and tested in the same domain can be better anticipated.

The processes shown in Figure 1.2-1 are described in activities in this Guidebook, and are depicted graphically with Integration Definition (IDEF0) Method diagrams (see Section 5 of this Introduction for IDEF0 descriptions).  Each process also is documented as a separate activity in the format described in Section 4 of this Introduction.  This format enables the reader to easily navigate through the Guidebook, and makes the Guidebook a training tool for individuals unfamiliar with the organization’s standard software process (see Figure 1.2-1).

Although this Guidebook lays the basic foundation, applying the organization’s standard software process does not guarantee a project’s success.  This Guidebook should be used as a reference and basic standard.  Each project will encounter its own problems and conflicts, which are not always foreseeable.  However, only through developing standard software processes,  record keeping, and ongoing process improvement (see activity 4.1 Identify And Test Process Improvements) will the organization begin identifying trouble spots particular to its domain, and taking corrective actions to prevent or reduce the risk of problems occurring.  A standard software process enables the organization to avoid repeating mistakes and fully use lessons learned (see activity 4.1.2 Identify Lessons Learned) from previous projects.

The processes documented in activities in this Guidebook reflect SEI CMM Levels 2 and 3.  At these levels, organizations have institutionalized effective processes for managing software that can be repeated in future projects.  These processes integrate software engineering and management activities.  

In addition, the processes/activities in this Guidebook are based in part on the requirements and outline of MIL-STD-498 (approved 5 December 1994).  This standard was selected over MIL-STD-2167A for multiple reasons, which include the following:

MIL-STD-498 is less document-driven, and is more compatible with computer-aided software engineering (CASE) tools.

MIL-STD-498 encourages using software-management indicators.

MIL-STD-498 is more compatible with object-oriented methods.

The majority of the Data Item Descriptions (DID) described and discussed throughout this Guidebook are based upon MIL-STD-498 (see Appendix E for the DIDs).

2.	Guidebook Organization And Content

The Guidebook is divided into this Introduction, four main volumes (Software Management, Software Configuration Management, Software Development, and Software Process Improvement), and several appendices.  Quality assurance is handled by a separate organization.  The numbering of individual activities in each volume corresponds to the level of IDEF0 diagrams that are attached (see Section 5).  

Software Management Volume =			Section level (1.x) of IDEF0 diagrams

Software Configuration Management Volume =	Section level (2.x) of IDEF0 diagrams

Software Development Volume =			Section level (3.x) of IDEF0 diagrams

Software Process Improvement Volume =		Section level (4.x) of IDEF0 diagrams

2.1	Software Management Volume

The Software Management Volume describes the activities making up the organization’s standard process for managing a software project.  This volume outlines a process consistent with an organization performing at SEI CMM Level 3.  Thus, the management activities described provide a framework for an organization’s growth through SEI’s repeatable and defined levels of organizational maturity, establishing the organizational prerequisites for advancing to higher levels.  

The Software Management Volume consists of two activities:  1.1 Plan Software Project and 1.2 Track Software Project.  Activity 1.1 covers all planning activities, and activity 1.2 covers the day-to-day management of the software project.

2.2	Software Configuration Management Volume

The Software Configuration Management Volume documents the software configuration management (SCM) activities of a project.  Because SCM is integrated with the software development process, the intended audience for this volume cannot be limited to a single role or group.  The activity Place Products Under SCM is written primarily for SCM personnel, and the remaining activities may involve the project’s entire software engineering group.  Thus, all individuals on a software project are encouraged to review this volume. 

The Software Configuration Management Volume consists of three activities:  2.1 Place Software Products Under Software Configuration Management, 2.2 Dispositioning Software Configuration Management Reports Or Requests, and 2.3 Prepare Software Products For Delivery.  Activity 2.1 describes placing an approved software product under SCM, and activity 2.2 covers creating and handling Software Trouble Reports, Software Change Requests, and Requests for Deviation/Waiver.  Activity 2.3 covers the SCM processes for software products being prepared for delivery.

2.3	Software Development Volume

The Software Development Volume documents the software development activities performed by the software developers and software testers during a project.  It does not cover management or planning activities that the developers or testers may be asked to participate in.  The intended audience for the volume includes the software engineering and test staffs assigned to a software development project. 

The Software Development Volume assumes that Ada is the programming language.  The Object-Oriented Software Development (OOSD) methodology [Colbert, 1995] is described in Attachment II of this volume.  While Attachment II documents the steps and activities performed during software development using Colbert’s OOSD methodology, it is not a substitute for training in this methodology or in Ada.

The Software Development Volume consists of three sections:  3.1 Participate In Systems Requirements Definition, 3.2 Perform Software Development, and 3.3 Participate In System Integration And System Qualification Testing.  

Activity 3.1 describes the software developer’s participation in the system’s requirements analysis and design process, and activity 3.2 describes developing the software products and covers all software development activities from software requirements analysis to software qualification testing.  Activity 3.3 describes the software developer’s participation in the system integration and qualification testing.

2.4	Software Process Improvement Volume

The Software Process Improvement Volume consists of three main activities:  4.1 Identify And Test Process Improvements, 4.2 Maintain The Organization’s Assets, and 4.3 Develop And Supply Organizational Training.  In activity 4.1, the SEPG determines what process or technology changes should be made in the organization’s standard software process, based on the high-level organizational goals, and in activity 4.2, information about the organization’s process and products is tracked and maintained.  In activity 4.3, the organization’s training needs are defined, training materials and methods are developed or identified, and the training is conducted.  The intended audience for this volume is SEPG members and project software managers.

2.5	Appendices

Appendix A - Glossary

This appendix documents the terms used in this Guidebook and their definitions.

Appendix B - Abbreviations and Acronyms

This appendix documents the acronyms used in this Guidebook and their meanings.

Appendix C - Forms

This appendix contains the forms (and their instructions) referenced throughout the Guidebook.

Appendix D - Tools

This appendix contains tables relating available software tools to the volumes and activities in which they may be used.

Appendix E - Data Item Descriptions (DIDs)

This appendix contains the outlines and content specifications for the full document set produced when implementing a software project in accordance with the processes described in this Guidebook.  All of the DIDs are tailored from MIL-STD-498 with the exception of the Improvement Study Plan (ISP), Lessons Learned Document (LLD), Organizational Training Plan (OTP), Software Baseline Document (SBD), and Software Configuration Management Plan (SCMP).

Appendix F - Bibliography

This appendix contains information about the authors, publishers, and publication dates, as appropriate, for the documents referenced throughout the Guidebook.

Appendix G - Capability Maturity Model (CMM) Key Practice Area (KPA) Mapping To Activities

This appendix maps the KPAs of the CMM in Levels 2 and 3 to specific activities in all volumes of the Guidebook.

Appendix H - Traceability Matrix for Activities, Artifacts, and Data Item Descriptions (DIDs)

This appendix contains the traceability matrix linking each Guidebook activity to the artifacts developed in that activity and to the DIDs used (as applicable).

Appendix I - Traceability Matrix for Roles and Activities

This appendix contains the traceability matrix linking each role to each activity in which it is performed. 

3.	Roles

The following primary roles (see Figure 3-1) are discussed throughout the Guidebook.  It should be clearly understood that an individual may perform several different roles on a project, especially small projects with limited staffing.  For example, it is possible for the project software manager to be the SCM manager.  Assigning roles to individuals on a project is discussed in activity 1.1.1.2.1 Identify Software Project Organization.

� EMBED PowerPoint.Show.4  ���

Figure 3-1.  Example of Software Project Roles

The project manager holds total business responsibility for an entire project.  This individual directs, controls, administers, and regulates a project team that is building a software or hardware/software system.  The project manager is ultimately responsible to the customer [CMU/SEI-93-TR-25].

The project software manager holds total responsibility for all the software activities of a project.  The project manager interacts with the project software manager on software commitments.  The project software manager controls all software resources for a project [CMU/SEI-93-TR-25].

The SCM manager has total responsibility for all SCM activities on a project.

The SCM staff comprises the individuals who perform the day-to-day SCM duties (e.g., placing products under SCM).

The software engineering manager is responsible for all software development and maintenance activities except qualification testing.

The software engineering staff  comprises the software technical people (e.g., developers), who perform the software design, development, and unit and integration testing on the project.

The SQA manager is assigned by the Office of Safety, Environment, and Mission Assurance (OSEMA), and is responsible for all SQA activities on a given project.  The individual filling this role may not fill any other team role must also report directly to a level of management above the project manager.

The SQA staff  comprises the individuals who perform the day-to-day SQA duties (e.g., performing audits and participating in reviews).

The software test manager has overall responsibility for planning and performing qualification tests on the software being developed.  This role may not be filled by any member of the software engineering group.

The software test staff writes the software test cases and procedures, and performs the tests.  For software qualification testing, these individuals must not be in the software engineering group.

4.	Activity Format

This Guidebook is written in the style of a formal process model.  The activities in this Guidebook adhere to the following layout template:

Activity Number and Name

Each activity described in this Guidebook has a number and name corresponding to an activity on an IDEF0 diagram.

Overview

Each overview section describes the activity’s overall purpose.  The first sentence of the overview is a concise description summarizing what will be done in the activity (i.e., the purpose of the activity).  The remaining text expands on this information.

Roles and Responsibilities

This section identifies the roles and responsibilities of the individuals performing the activity.  The primary roles are described in Section 3 of this Introduction.  Specific personnel designated by position titles are not assigned until the project is defined.  The roles identified as performing the activity also are depicted as mechanisms in the accompanying IDEF0 diagrams.

Controls

This section lists external factors, data, or products that may influence how the activity is performed or that may be required to produce correct output.  Data or products listed here also may be transformed into activity outputs.



Inputs

This section lists all data or products that are not controls, but that are directly transformed by the activity into outputs.

Procedures

This section describes the subactivities or steps to complete and document the activity.  External material containing guidelines and instructions may be referenced in this section.  The sequence of subactivities or steps is explained.  Any subactivities or steps that may be performed in parallel are identified.  The steps state how the activity will be accomplished, and specify that the artifacts are placed under CM, if appropriate.  The Guidebook uses shaded text for examples to distinguish them from procedure steps.  User-entered directions and commands are italicized in the examples.

Outputs

This section lists all software products or data produced by the activity and their destinations.  Outputs include all artifacts, data stores, or documents that are created, added to, or modified by the activity.

5.	IDEF0 Diagrams

IDEF0 diagrams represent the software project processes described in this Guidebook.  This notation is standardized in FIPS PUB 183, and is maintained by the National Institute of Standards and Technology (NIST).  An IDEF0 model presents a hierarchical representation of the process that is generalized at the higher levels and increasingly detailed at each lower level.  Any activity represented in an IDEF0 model may be decomposed in a child diagram(s) showing its subactivities to the desired level of detail.

An IDEF0 model begins by presenting the entire process as a single diagram shown as a box with arrows indicating the external objects that are inputs, controls, mechanisms, and outputs.  This diagram breaks down into lower-level activity diagrams (i.e., child diagrams), introducing greater detail levels.

As shown in Figure 5-1, interpreting an arrow for any activity (shown as a box) depends on its position.  Arrows entering the activity from the left represent inputs that are transformed or consumed by the activity to produce an output.  Arrows leaving the activity box on the right represent the outputs that are the data or objects produced by the activity.  Arrows entering the box from the top are controls that specify the conditions required for the activity to produce correct outputs.  Arrows entering the activity from the bottom represent mechanisms that are defined as something (or someone) supporting the activity’s execution.�
�



















Figure 5-1.  Example of an Activity

An arrow pointing down from the bottom of the activity box is a call arrow that enables sharing of details between models or portions of the same model.  A call arrow indicates the referenced activity is not shown in its child diagram, but is a separate activity (with its own descendants) in the same or another model. The call arrow is labeled to show which activity is being called.  This call also is reflected in the text describing the calling activity.  The calling activity’s text may briefly describe only the called activity, referencing another Guidebook section with more detail. 

Each volume’s contents are depicted by a set of diagrams.  Together, all volumes of the Guidebook make up the first level of decomposition of activities under the context diagram.  From there, the volumes are individually associated with related subactivities that have the same numbering scheme (see section 2 of this Volume).  

The top-level diagram, consisting of a single activity box with its arrows, is the context diagram and is numbered 0 (in the lower, right-hand corner), as illustrated in Figure 5-1.  This top-level, context diagram is decomposed into its major subactivities in its child diagrams, which are numbered 1, 2, 3, etc., as illustrated in Figure 5-2.  Each child activity also may be broken down into lower-level, child diagrams (numbered 1.1, 1.2, etc.), thus, creating a hierarchical tree structure.  A diagram’s number indicates its parent.  If an activity is numbered 1.2, the observer knows it is a child of an activity numbered 1.  Activities 1, 2, 3, etc., are all child activities of Activity 0, which is the context diagram.

The typical IDEF0 child diagram may show several activities, as illustrated in Figure 5-2.  The diagram may appear to represent a time-ordered sequence, but the activities’ positions in a diagram should not be interpreted as indicating a performance order.  In fact, it is possible that not all the activities shown are to be performed each time their parent activity is performed.�
��

















Figure 5-2.  Example of a Child Diagram



Example:

It is possible that Activity X and Activity Y in Figure 5-2 are mutually exclusive; that is, only one of them is to be performed.  Furthermore, while it may seem reasonable to assume that Activity Z follows Activity Y, this is not necessarily the case.  It may be possible to complete Activity Z without performing Activity Y because O2 may be needed only by an Activity Z subactivity that is not always performed.  It also is possible that some activities may be performed in parallel.  Thus, the user should make no assumptions concerning the order of activities based solely on the diagrams.  The user should always consult the text to understand the true dependencies and required sequencing of the activities.

An additional notation is sometimes used, as shown in Figure 5-3.  Placing parentheses around the beginning or end of an arrow is known as “tunneling.”  Ordinarily, the same inputs, outputs, mechanisms, and control arrows that appear in the parent diagram also appear in the child diagram.  In some cases, this results in extremely complex and unreadable diagrams.  Using tunneling avoids this problem.

�











�������������











Figure 5-3.  Example of Tunneling



In Figure 5-3, the arrow representing the mechanism M2 is tunneled on the end farthest away from the activity.  This indicates that M2 does not appear in the parent diagram.  The arrow representing control C1 is tunneled on the end where it enters the activity.  This indicates that C1 will not appear in the child diagram of Activity X, but C1 is still a control for all the subactivities of Activity X.  Activities I3 and O4 are not tunneled.  Thus, I3 and O4 should appear in both the parent and child diagrams for Activity X.  Note that any arrow (i.e., input, output, mechanism, or control) may be tunneled on either or both ends. 

Arrows also may be forked and joined, as shown in Figure 5-4.  A fork or join indicates that the same kind of data or object (or some part thereof) may be used or produced by more than one activity.  These branches may represent the same object or portions of the same object. Labels on branching arrow segments specify what the branches represent, providing a detailing of the arrow content just as lower-level activities provide a detailing of the parent activity’s content.  All or some of an arrow’s contents may follow a branch.  A forking arrow may denote the “unbundling” of data or objects that had been combined under a more general label.  The joining of two arrow segments may denote “bundling” (i.e., the combination of separate data items or objects into a more general category).  

In Figure 5-4, output O3 is the union of O1 and O2.  This is an example of the joining of two arrow segments.  The arrow representing input I1 splits into branches labeled I2 and I3.  This is an example of a fork.





�











Figure 5-4.  Example of a Join and Fork

6.	Future Plans

6.1	Process Improvement Program

The NASA LaRC Information Systems and Services Division (ISSD) plans to assist other organizations desiring to initiate, plan, run, measure, and manage a continuous, software process-improvement program.  Through technology transfer services, other organizations may obtain process technologies and apply them to improve their own practices.  Users of these services can expect to accomplish the following: 

Understand how to identify areas for process improvement.

Understand how to initiate process improvement activities once a process assessment is completed.

Understand how to measure process improvement activities.

Understand the role the SEPG plays in process improvement.

Understand how to define and model processes.

Understand and be able to introduce or accelerate positive change within their organizations.

Understand what is required to achieve higher maturity levels of the CMM.

Develop and implement action plans that will serve as the basis for process improvement.

6.2		Software Engineering Process Guidebook

This Guidebook will continue to be maintained and improved based on comments from individuals who use the Guidebook and implement the process improvement (see Software Process Improvement Volume).

Introduction



�PAGE  �





�PAGE  �ii�

Released    February 5, 1997 	





Activity X



Mechanism



Output



Control



Input



Call



0



Activity X



Activity Y



Activity Z



I1



I2



I3



O1



O3



O2



1



2



3



(  )



Activity X



(   )



C1



M2



I3



O4



1.1



Activity 2



Activity 1



I1



I3



I2



O3



O2



O1



1.1.1



1.1.2







