

SOFTWARE ENGINEERING & ANALYSIS LAB

SOFTWARE MANAGEMENT VOLUME

OF THE

SOFTWARE ENGINEERING PROCESS GUIDEBOOK

Final

February 5, 1997

�EMBED MSDraw���

National Aeronautics and

Space Administration

Langley Research Center

Hampton, VA 23666

�Revision History

Revision�Date�Description�Approved��Release 0.1�9/10/96�Initial draft�R. Parrish��Working Draft�9/30/96�Working Draft in file: manage.doc�R. Parrish��Final�2/5/97�Final delivery�R. Parrish���Table Of Contents

SECTION	PAGE

1.0	Manage Software Project	1

1.1	Plan Software Project	3

1.1.1	Plan Software Development	5

1.1.1.1	Determine Software Project Scope	7

1.1.1.1.1	Identify Software Project Deliverables	9

1.1.1.1.2	Develop Work Breakdown Structure	11

1.1.1.1.3	Estimate Lines Of Code	14

1.1.1.1.4 	Perform Cost Estimating	16

1.1.1.1.5 	Develop Software Schedule	18

1.1.1.2 	Identify Software Project Organization And Resources	20

1.1.1.2.1 	Identify Software Project Organization 	22

1.1.1.2.2	Identify Software Engineering Environment	24

1.1.1.2.3	Identify Software Products For Reuse	26

1.1.1.3 	Define Software Development Process	28

1.1.1.3.1 	Define Participation In System Requirements And Design	30

1.1.1.3.2 	Define Plans For Performing Detailed Software Development Activities	32

1.1.1.3.3 	Define Participation In Hardware/Software Integration And Testing	35

1.1.1.4 	Plan Risk Management	37

1.1.1.5 	Determine Metrics To Be Collected	39

1.1.2 	Plan Software Configuration Management	41

1.1.2.1 	Determine Project Software Configuration Management Needs	44

1.1.2.1.1 	Perform Software Configuration Management Needs Analysis	45

1.1.2.1.2 	Determine Reports And Forms Required	49

1.1.2.1.3 	Identify Products Under Software Configuration Management Control	51

1.1.2.2 	Determine Project Software Configuration Management Activities	54

1.1.2.2.1 	Identify Software Configuration Management Roles And Responsibilities	55

1.1.2.2.2 	Set Up Software Control Boards	58

1.1.2.2.3 	Define Backup And Restore Procedures	60

1.1.2.2.4 	Define Change Management Process	62

1.1.2.2.5 	Determine Configuration Audits To Be Performed	64

1.1.2.3 	Select Software Configuration Management Tools	66

1.1.2.4 	Develop Naming And Numbering Standards And Directory Structure	68

1.1.2.5 	Develop Software Configuration Management Plan	76

1.1.2.6 	Provide Software Configuration Management Training	77

1.1..3 	Plan Software Testing	79

1.1.3.1	Identify Software Test Environment	81

1.1.3.2	Define Testing Approach	83

1.1.3.3	Determine Test Schedule	85

1.1.4 	Plan And Provide Software Project Training 	87

1.2 	Track Software Project	89

1.2.1	Monitor Software Project Performance 	90

1.2.1.1	Perform Risk Management	91

Table Of Contents (continued)

SECTION	PAGE

1.2.1.2	Conduct Progress Reviews	93

1.2.1.3	Analyze Software Project Metrics	95

1.2.1.4	Maintain Software Project Plans	98

1.2.2 	Participate In Major Project Reviews	100

Attachment I - 	Integration Definition (IDEF) Method Diagrams

Attachment II -- Major Project Reviews

�1.0		MANAGE SOFTWARE PROJECT

Overview

This activity covers all aspects of software project management, including software project planning, continuous monitoring of software project activities, and participating in project-level milestone reviews.

Roles and Responsibilities

The project software manager has total responsibility for all software activities for a project.

Controls

The organization’s standard software process describing the fundamental software process elements that each software project is expected to incorporate into its defined software process.

The Project Plan documenting the project’s purpose, schedule, budget, life cycle, and milestones.

Inputs

Inputs vary widely depending on the project and when the project software manager becomes involved in the project. Inputs can include any available system documentation such as the:

Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective (as described in LHB 7122.1).

As well as:

Improvement Study Plan(s) (ISP) (see Appendix E (for the Data Item Description (DID)) which may impact any or all management plans and activities.

Approved Software Change Requests (SCR)/Requests for Deviation/Waiver (see Appendix C) which may be received at any time, causing a change in one or more of the management plans (see activity 2.2.6 Hold Software Control Board Meeting) or processes.

Software metric reports from the software engineering process group (SEPG) showing the status and progress of the software project.

Procedures

Throughout the project, the project software manager reports management metrics to the SEPG. These metrics are defined in the organization’s standard software process.

At any time during the project, SCRs may be received. When this occurs, all management plans should be reviewed to determine the full extent of required changes.

The organization’s standard software process, as documented in this Guidebook, provides the processes and methods for managing a software project, as well as the standard set of products to be developed (based on those prescribed in MIL-STD-498). The SEPG may request that the project participate in process/method/technology improvement activities as documented in an ISP. These may impact one or more of the management plans or activities. If the project software manager believes it is in the project’s best interest or necessary due to project constraints to deviate from the organization’s standard software process, a Request for Deviation/Waiver is submitted to the SEPG (see activities 2.2.1 Request Deviation/Waiver and 4.1.1 Review Request for Deviation/Waiver), explaining the need for deviation and outlining the new approach. Upon approval of the deviation/waiver, the project is free to pursue the approved course of action with SEPG support and software quality assurance (SQA) approval.

This activity is divide into the following subactivities:

1) 1.1 Plan Software Project. In this activity, the software project plans (e.g., Software Development Plan (SDP), Software Test Plan (STP), Software Configuration Management Plan (SCMP), Software Project Training Plan (tailored from the Organizational Training Plan) (OTP)) are developed based on the higher level project plan(s) and project descriptions (e.g., Preliminary Mission Needs Statement). The Data Item Descriptions (DID) for these plans are in Appendix E. The software engineering and test environment is selected and acquired. These plans may be updated as the project progresses.

2) 1.2 Track Software Project. In this activity, the plan(s) are implemented. The software project’s progress is monitored via metric reports, and the plans are updated based on project performance. The project software manager also supports the project-level reviews.

Outputs

Management plans consisting of the SDP, STP, SCMP, and Software Project Training Plan.

Management metrics entered into the organization’s metrics database.

�1.1		Plan Software Project

Overview

In this activity, the software project plans (e.g., Software Development Plan (SDP), Software Test Plan (STP), Software Configuration Management Plan (SCMP), Software Project Training Plan (tailored from the Organizational Training Plan) (OTP)) are developed based on the higher level project plan(s) and descriptions (e.g., Preliminary Mission Needs Statement). The Data Item Descriptions (DID) for these plans are in Appendix E. These plans are updated as the project progresses.

Roles and Responsibility

The project software manager leads and coordinates the software project planning.

Controls

NHB 7120.5 Management of Major System Programs and Projects provides general planning guidance for program management and testing.

The Project Plan documenting the project’s purpose, schedule, budget, life cycle, and milestones.

Inputs

Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective (as described in LHB 7122.1).

Procedures

Activities 1.1.1 Plan Software Development, 1.1.2 Plan Software Configuration Management, and 1.1.4 Plan And Provide Software Project Training should be completed as early as possible. The SDP should be started within the first two months of the project [NASA-GB-001-96, p. 19]. Activity 1.1.3 Plan Software Testing should be completed prior to completing the software design.

This activity is divided into the following subactivities:

1) 1.1.1 Plan Software Development. In this activity, the project software manager selects the software developers and software engineering environment, outlines the entire software development effort, and documents these in the SDP. The SDP should meet the project’s needs as stated in the Preliminary Mission Needs Statement and be coordinated with the Project Plan. General planning guidance is provided in NHB 7120.5.

2) 1.1.2 Plan Software Configuration Management. This activity describes all software configuration management (SCM) planning activities. These activities include: determining the SCM needs, identifying the SCM activities that must be performed, setting up the SCM environment, developing the naming and numbering scheme and directory structure, creating an SCMP, and providing SCM training.

3) 1.1.3 Plan Software Testing. In this activity, the software test manager develops the project’s tailored Software Test Plan (STP) (see Appendix E) for use in independently testing software. The software test manager identifies the details of the software test environment, defines the test organization, and determines the test schedule.

4) 1.1.4 Plan And Provide Software Project Training. In this activity, the project training needs are identified, the training approach is determined, the Software Project Training Plan is developed, the training materials are selected, and the training is conducted.

Outputs

Software project plans consisting of the SDP, SCMP, STP, and Software Project Training Plan.

�1.1.1	Plan Software Development

Overview

This activity encompasses the efforts to effectively plan a software development effort, including determining the project’s scope, identifying the organization and resources for developing the software, defining the applicable software development phases, and planning for managing risks in the development. The activity’s results are documented in the project’s Software Development Plan (SDP).

Roles and Responsibilities

The project software manager plans the software development effort and develops the SDP.

The project manager reviews and approves the SDP.

The software engineering process group (SEPG) maintains the software metrics database.

Controls

The Project Plan defining the program-level requirements, management organization and responsibilities, and program resources and schedule. For a description of this plan, see NHB 7120.5 (pp. 2-A-13 - 2-A-17).

The SDP Data Item Description (DID) (see Appendix E) describing the SDP format.

Inputs

Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective (as described in LHB 7122.1).

Any other available project documentation or plans (e.g., Pre-Phase A Work Plan, Phase A Study Plan) documenting the project’s purpose, schedule, budget, life cycle, and milestones. The availability, content, and format of these will vary between projects.

Procedures

The following subactivities are iteratively performed:

1) 1.1.1.1 Determine Software Project Scope. This activity breaks down the work to be performed (as defined in the Project Plan, Preliminary Mission Needs Statement, and any other available project documentation or plans) into manageable units, establishes size and cost estimates to successfully develop the software, and schedules the work to be performed.

2) 1.1.1.2 Identify Software Project Organization And Resources. In this activity, the software project organization is defined, personnel are selected and assigned, and the development platform and tools are selected.

3) 1.1.1.3 Define Software Development Process. The project software manager tailors the organization’s standard software process to meet the individual project’s needs. The project’s software engineering life cycle is determined, as well as software personnel’s roles in the system-level requirements, design, and testing activities.

4) 1.1.1.4 Plan Risk Management. This activity describes planning for the continuous process of managing technical, programmatic, supportability, cost, and schedule risks throughout a software project’s life time.

5) 1.1.1.5 Determine Metrics To Be Collected. In this activity, the software metrics to be collected, collection forms, and reports to be generated on the software project are identified in coordination with the SEPG, which maintains the software metrics database.

6) Upon completing the above activities, the major SDP sections have been completed. The project software manager then completes any remaining required SDP sections (e.g., Document Overview, Relationship To Other Plans), and submits the SDP to the project manager for review and approval.

7) Upon approval by the project manager, the project software manager submits the SDP to be placed under software configuration management (SCM) (see activity 2.1.1 Place A New Document Under SCM).

Outputs

The SDP which was completed, approved by the project manager, and placed under SCM.

�1.1.1.1		Determine Software Project Scope

Overview

This activity breaks down the work to be performed into manageable units, and establishes size and cost estimates. A schedule for completing the software project is developed.

Roles and Responsibilities

The project software manager determines the scope of the software project.

Controls

The Project Plan documenting the project’s purpose, schedule, budget, life cycle, and milestones.

Any other available project plans (e.g., Pre-Phase A Work Plan, Phase A Study Plan) documenting the project’s purpose, schedule, budget, life cycle, and milestones. The availability, content, and format of these will vary widely between projects.

Inputs

The software development process outlining the software project’s life cycle and activities to be performed (see activity 1.1.1.3 Define Software Development Process).

Any available system requirements and/or design documentation describing the system’s functionality.

Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective (as described in LHB 7122.1).

The software project organization and resources that must be factored into the schedule and cost estimates (see activity 1.1.1.2 Identify Software Project Organization And Resources).

Procedures

The following subactivities, which determine the software project’s scope, are iteratively performed by the project software manager, and their results are documented in the Software Development Plan (SDP) (see Appendix E):

1) 1.1.1.1.1 Identify Software Project Deliverables. In this activity, the items to be delivered are identified, using the Preliminary Mission Needs Statement, and other available system requirements, design documents, or project plans. These products may be generally categorized as software and related documentation.

2) 1.1.1.1.2 Develop Work Breakdown Structure. In this activity , a work breakdown structure (WBS) is prepared. The WBS subdivides the work to be performed into successively smaller units at each lower level of a tree structure.

3) 1.1.1.1.3 Estimate Lines Of Code. This activity uses the Wideband Delphi technique to estimate the size of a software project as source lines of code (SLOC) that must be produced for each computer software configuration item (CSCI).

4) 1.1.1.1.4 Perform Cost Estimating. This activity covers estimating the cost to complete the software project. This includes estimates for both labor and resources (i.e., hardware and software) that must be purchased.

5) 1.1.1.1.5 Develop Software Schedule. In this activity, a schedule for the software project is produced based on the project schedule in the Project Plan (or other project plans) and the selected software development process.

Outputs

The software project scope defining the software products to be delivered, the size of the software to be developed, and the schedule, all of which are documented in the SDP. The cost to complete the software project is estimated and documented in a separate cost database.

�1.1.1.1.1	Identify Software Project Deliverables

Overview

In this activity, the software organization’s work to be performed is identified as deliverable products that are generally categorized as software and related documentation.

Roles and Responsibilities

The project software manager determines what software products are to be delivered.

The project manager communicates to the project software manager the software products required.

Members of other engineering groups (e.g., hardware, optics) who may need software products and/or support, identify their software needs (e.g., prototypes to test developed hardware).

Controls

Project Plan outlining the project’s work, schedule, and items to be delivered.

Inputs

Preliminary Mission Needs Statement which establishes the justification for undertaking an agency objective or effectively pursuing an opportunity pertaining to an agency objective (as described in LHB 7122.1).

Any available system requirements and design documentation describing the system’s functionality.

Procedures

1) The project software manager first reviews the Project Plan, Preliminary Mission Needs Statement, and any other available system requirements or design documentation with the project manager to gain a general understanding of the project. The available documentation will vary widely between projects. The system’s identification and purpose are then documented in the Identification and System Overview sections of the Software Development Plan (SDP) (see Appendix E).

2) The project software manager reviews the Project Plan and discusses the software products that must be delivered with the project manager. Members of other engineering disciplines are consulted to identify software products that will be needed to test or demonstrate their products (e.g. simulators, data acquisition software). The project software manager should consider these products as required deliverables. The focus of this effort is the software deliverables (e.g., executable files, user’s guides, data files) that must be delivered to groups or organizations outside of the software engineering group, not the products developed internally to the software engineering group (e.g., preliminary design documents, detailed design documents). All deliverables should be identified as early as possible in the project life cycle, although some products may not be fully defined until later in the project because the needs of other disciplines (e.g., hardware, optics) may not be known early.

3) Once the deliverable software products are identified, the project software manager must determine the computer software configuration items (CSCI) that must be created.

For spaceflight projects, software is normally required in these areas:

Flight software - Software needed on board the instrument to control the various flight components.

Ground support software - Simulation software needed to test and validate the flight software or hardware and associated interfaces and data.

Mission operations software - Software needed to acquire the science/instrument data on the ground and issue commands to the system in-flight.

Post mission data analysis software - Software needed to analyze the mission data.

The CSCIs should be summarized in the System Overview section of the SDP, with the deliverables show under each CSCI.

At this point, the project software manager should consider whether a single SDP will suffice or if multiple SDPs should be developed for multiple CSCIs. For small projects, a single SDP should suffice. Multiple SDPs are often necessary for large projects with multiple contractors. A single SDP is assumed for this Guidebook.

4) For each deliverable, the project software manager identifies any project-level constraints on the deliverables (e.g., required development language, required standards), formatting requirements, interim required deliverables (e.g., initial drafts, final drafts), and other delivery requirements (e.g., hypertexting, hard copies). These are documented in the Overview of Required Work section of the SDP.

Outputs

The identified software deliverables divided into CSCIs which are documented in the SDP, along with the constraints and delivery requirements.

�1.1.1.1.2	Develop Work Breakdown Structure

Overview

In this activity, a work breakdown structure (WBS) is created for the software project. A WBS is a product-oriented tree identifying the hardware, software, studies, services, and other tasks required to achieve an end objective [WBS Student Guide, 1995, p. 12]. The WBS is extremely useful in organizing, budgeting, and scheduling the project, and is continually maintained throughout the software project’s life.

Roles and Responsibilities

The project software manager creates the WBS.

Controls

The Project Plan containing the project-level WBS.

Inputs

The identified computer software configuration items (CSCI).

The Software Configuration Management Plan (SCMP) and the Software Test Plan (STP) (see Appendix E for both plans) for the software project (if available).

The defined software engineering environment (if available).

Procedures

The WBS is iteratively developed. As more information about the software products becomes available, the WBS is updated. The first attempts at building the WBS focus on the products to be delivered, grouped under the CSCIs to be developed. The WBS is updated as plans (e.g., SCMP, STP(s)) are completed, and the software engineering and test environments are identified.

1) The project software manager first reviews the identified CSCIs and the products associated with each of them. The project software manager also reviews the project-level WBS from the Project Plan to determine how the software CSCIs should fit into it.

2) The software WBS is developed (see WBS Student Guide, 1995). The upper-level WBS items should be as product-oriented as possible, showing the CSCIs to be developed and any other products identified for delivery. At lower levels, the internal software products (i.e., to be produced/acquired by and for the software development effort, but not for the customer) are added into the WBS as may be level-of-effort activities. At the low WBS levels, the project software manager may wish to include elements for which a specific job or service is required (e.g., configuration management (CM) of products, software project tracking and oversight). For additional information on WBS development, see [McDermid, 1993, pp. 27/20 - 27/21]. The following is an example of a detailed WBS.

�Example:

WBS

1. Project X Software

	1.1 Flight Software CSCI

	 	1.1.1 Software Requirements

	 	1.1.2 Software Design (Preliminary)

	 	1.1.3 Software Design (Detailed)

	 	1.1.4 Flight Code

	 	1.1.5 Software Tests

	1.2 Ground Support Software CSCI

		1.2.1 Software Requirements

	 	1.2.2 Software Design (Preliminary)

	 	1.2.3 Software Design (Detailed)

	 	1.2.4 Code

	 	1.2.5 Software Tests

	1.3 Mission Operations CSCI

		1.3.1 Software Requirements

	 	1.3.2 Software Design (Preliminary)

	 	1.3.3 Software Design (Detailed)

	 	1.3.4 Code

	 	1.3.5 Software Tests

	1.4 Post-mission Data Analysis CSCI

		1.4.1 Software Requirements

	 	1.4.2 Software Design (Preliminary)

	 	1.4.3 Software Design (Detailed)

	 	1.4.4 Code

	 	1.4.5 Software Tests

	1.5 Software Project Management	

		1.5.1 Software Project Plans

			1.5.1.1 Software Development Plan

			1.5.1.2 Software Configuration Management Plan

			1.5.1.3 Software Quality Assurance Plan

			1.5.1.4 Software Test Plan

		1.5.2 Product Configuration Management

	1.6 Software Development Tools

		1.6.1 Compilers

		1.6.2 Test Tools

		1.6.3 Management Tools

		1.6.4 CASE Tools	

		1.6.5 Development Platform/Maintenance

3) The detailed WBS is then documented in an appendix of the SDP.

Outputs

The WBS documented in an appendix to the SDP.

�1.1.1.1.3	Estimate Lines Of Code

Overview

In this activity, the Wideband Delphi technique is used to estimate the number of source lines of code (SLOC) that must be produced for a given computer software configuration item (CSCI). SLOC estimates are the primary input to most cost estimating models and are directly related to the software product, and, thus, facilitate comparing planned development versus actual results.

Roles and Responsibilities

The project software manager develops the SLOC estimate.

The software engineering process group (SEPG) members may be asked to participate in the estimating.

Experienced software developers and the software engineering manager (if assigned) may be asked to participate in the estimating.

Controls

The work breakdown structure (WBS) identifying the CSCI(s) to be estimated.

Inputs

Any available system requirements, design documentation, or other project descriptions which may aid in understanding the required functionality of the software to be developed.

Procedures

The SLOC estimate is iteratively developed. As more information about the project deliverables becomes available, the estimate is updated. For each CSCI identified in the WBS, the following steps are performed:

1) The project software manager selects experienced software developers, the software engineering manager and/or members of the SEPG to assist in estimating. These individuals should have experience in the project domain and the development language.

2) Each individual reviews any available system requirements, design documentation, or other project descriptions to familiarize themselves with the required CSCI functionality. SEPG members should identify any similar past projects and provide information on the actual SLOC counts for them.

3) The project software manager meets with the selected software developers and/or SEPG members to discuss the software project and any estimation issues. Then each member anonymously estimates (e.g., on slip of paper) the SLOC count for the CSCI.

4) The project software manager tabulates the results, and reviews them with the estimators, showing all estimates, the average, and the median. The results are discussed by the group, and steps 3 and 4 are repeated until the project software manager is satisfied with the estimate or range of estimates.

5) The SLOC estimate (or range) is then documented in the software metrics database.

�Outputs

The estimated SLOC for each CSCI which are documented in the software metrics database.

�1.1.1.1.4	Perform Cost Estimating

Overview

This activity covers estimating the cost to complete the software project. Two basic approaches to estimating the costs for performing a software project are: top-down and bottom-up. Top-down estimating draws an analogy between the current effort and previous similar projects, using historical data. These estimates should be adjusted to fit the particular requirements, characteristics, and environment of the individual software project. Bottom-up estimating determines and then sums up the cost of resources and labor for performing or acquiring each element of the work breakdown structure (WBS).

Roles and Responsibilities

The project software manager develops a cost estimate for the software project.

The software engineering process group (SEPG) members may be consulted to gather historical cost data.

Controls

The Project Plan providing an overview of the project and schedule information.

Inputs

Estimated source lines of code (SLOC) which is a primary input into most cost estimating tools (see activity 1.1.1.1.3 Estimate Lines of Code).

WBS listing the computer software configuration items (CSCI) and other elements to be costed (see activity 1.1.1.1.2 Develop Work Breakdown Structure).

Any available system-level requirements or design documents which may provide information on the system’s functionality.

The following inputs may not be initially available, but the cost estimate should be updated as the project progresses and the inputs are obtained:

The Software Configuration Management Plan (SCMP) and Software Test Plan (STP) (see Appendix E for Data Item Descriptions (DID)) specifying the configuration management (CM) and test activities and tools (see activity 1.1.2 Plan Software Configuration Management).

The software project schedule (see activity 1.1.1.1.5 Develop Software Schedule).

The software project organization and resources (see activity 1.1.1.2 Identify Software Project Organization And Resources).

Procedures

1) In preparing the initial cost estimate(s), the project software manager may consult with SEPG members to determine if actual cost data from previous similar projects is available. If so, the project software manager may, with the aid of SEPG members, adjust the cost actuals (based on the differences in complexity and size) from similar past projects to estimate the cost of the new project.

2) As more information becomes available, the project software manager uses software cost estimating tools (e.g., Revic, SEER, Price S, SLIM) to estimate the software project cost. These tools normally require as primary inputs: SLOC estimates, schedule and software project information, and information on the software engineering group’s experience levels. This information may not be initially available, and the estimate should be updated as these variables become known.

3) The project software manager should review the software WBS for items not normally covered by software cost estimating tools. These normally include software maintenance, system engineering support, or initial purchases of hardware or software to establish the software engineering or testing environments. Cost estimates for these items are normally easily obtained via vendor quotes.

4) The project software manager supplies this cost information to the project manager to support project-level budgeting and review activities. Because of the proprietary nature of this information, the project software manager normally maintains the cost information in a separate cost database.

Outputs

The software project cost estimate which is placed in a cost database and made available to the project manager.

�1.1.1.1.5	Develop Software Schedule

Overview

The software project schedule is iteratively developed to coincide with establishing the work breakdown structure (WBS) and preparing the project cost estimate. A summary top-level schedule is typically a one-page chart showing the planned start and end dates of each major computer software configuration item (CSCI) over the project’s duration. The schedule must fit the project’s time constraints, including any firm deadlines. A more detailed-level schedule shows the planned start and end dates of the WBS elements making up the CSCIs, as well as the acquisition of necessary hardware and software tools. The detailed schedule identifies specific team members and factors in resource availability and time constraints. This detailed schedule must fit within the top-level schedule, and make sure that task durations are accurate, and dependencies are identified to establish the critical path in project execution. In developing a viable schedule for the software components, it is important to understand any scheduling constraints imposed by major system milestones. Likewise, it is important to be aware of any changes in the project’s scope, and to assess the impact of such changes on project schedules.

Roles and Responsibilities

The project software manager and software engineering manager (if assigned) develops the software schedule.

The project manager reviews the top-level schedule.

The software engineering process group members (SEPG) may be consulted to estimate the duration of low-level activities.

Controls

Software development process selected for the project (see activity 1.1.1.3 Define Software Development Process) which identifies the life cycle approach and any intermediate builds.

The Project Plan containing the project schedule and identifying significant project milestones.

Inputs

Cost estimates which may provide the expected cost and manhours by life cycle phase (this is tool dependent) (see activity 1.1.1.1.4 Perform Cost Estimating).

Software Configuration Management Plan (SCMP) and Software Test Plan (STP) (see Appendix E for Data Item Descriptions (DIDs)), which provide information on resources and milestones that must be in the schedule (e.g., Functional Configuration Audit (FCA), Physical Configuration Audit (PCA), acquiring software configuration management (SCM) tools, test tools) (see activities 1.1.2 Plan Software Configuration Management and 1.1.3 Plan Software Testing).

The WBS which identifies the products to be developed (see activity 1.1.1.1.2 Develop Work Breakdown Structure).

Software project organization and resources which identify the personnel and software project resources (i.e., software engineering environments) that must be acquired (see activity 1.1.1.2 Identify Software Project Organization And Resources).

Procedures

1) The project software manager reviews the project schedule (as documented in the Project Plan) focusing on major project milestones and dependencies which would impact the software schedule.

2) Based on the identified software project life cycle, the project software manager creates the top-level schedule. The top-level schedule should show start and completion dates for all computer software configuration items (CSCI) identified in the WBS, as well as the major project milestones. Any dependencies between the CSCIs should be identified, and the project software manager should determine if the project milestones and deadlines can be met. The project software manager reviews this top-level software schedule with the project manager. If it is determined that the project schedule cannot be met, the project software manager should work with the project manager to determine the alternatives.

3) The project software manager, together with the software engineering manager, estimates the durations of all lower-level activities (e.g., preliminary design, detailed design) associating the WBS elements with these activities so that all dependencies between WBS elements are identified (e.g., the required acquisition of development tools is synchronized with the activities requiring those tools). Depending on the scheduling tool, an activity network may be generated showing the relationships and dependencies among the activities and identifying those on the critical path that impose the greatest time restrictions. SEPG members may be consulted, as well as some cost models (e.g., SEER), to determine the amount of time required to perform the lower-level activities. During this exercise, the project software manager should attempt to identify any activities which can be done in parallel, thus reducing the overall software project duration (e.g., software test plans may be started as soon as the software requirements are identified). The critical path for the project then can be generated. When the software project’s organization and personnel are selected, the project software manager should verify that the proper personnel will be available for the scheduled activities.

Any identified schedule problems in meeting the project schedule should be identified to the project manager.

4) The software project schedule and activity network are placed in the Schedules and Activity Network section of the SDP.

Outputs

The software project schedule (both top level and detailed) with the associated activity network(s). The schedule normally is kept in a scheduling tool; however, copies are placed in the Schedules and Activity Network section of the Software Development Plan (SDP) (see Appendix E).

�1.1.1.2		Identify Software Project Organization And Resources

Overview

In this activity, the software project organization is defined, personnel are selected and assigned, the software engineering environment is determined, and reusable assets are identified.

Roles and Responsibilities

The project software manager establishes the organization for the software project and the software engineering environment, and identifies assets for reuse.

The software engineering process group (SEPG) assists the project software manager in identifying reusable software assets and selecting the software engineering environment.

Controls

The software project scope defining the software products to be developed, the work breakdown structure (WBS), the size of the software to be developed, and the schedule which are documented in the Software Development Plan (SDP) (see Appendix E).

The Project Plan providing general information on the higher-level project organization and resources.

Inputs

Software development process selected for the project which identifies the life cycle approach and any intermediate builds.

Risk management tracking mechanism to be developed or acquired.

Procedures

The following activities are performed as early as possible in the software project life cycle. No ordering is assumed.

1) 1.1.1.2.1 Identify Software Project Organization. In this activity, the project software manager determines the software organizational structure to be used on the software project, including the organizations involved, their relationships to one another, and the authority and responsibility of each organization for carrying out required activities based on the selected software development process. Personnel then are assigned based on their availability and the software project schedule. The software project organization is a substructure of the higher-level project organization shown in the Project Plan. The software project organization is documented in the Project Organization and Resources section of the SDP.

2) 1.1.1.2.2 Identify Software Engineering Environment. In this activity, the project software manager, assisted by the SEPG, establishes a software engineering environment, consisting of facilities, equipment, and tools to support the software project, and a risk management tracking mechanism to support risk management activities. The planned software engineering environment and risk management tracking mechanism are documented in the Software Engineering Environment section of the SDP.

3) 1.1.1.2.3 Identify Software Products For Reuse. In this activity, the project software manager, assisted by the SEPG, identifies software assets generated by other projects or available from outside sources as candidates for reuse on the current software project. The project software manager also identifies any potential candidates for future reuse that will be developed during the software project. Planned reuse is documented in the Reusable Software Products section of the SDP.�

Outputs

The software project’s organization and resources (e.g., software engineering environment, reuse, assets) as documented in the SDP.

�1.1.1.2.1	Identify Software Project Organization

Overview

In this activity, the project software manager determines the software project organizational structure for the software project, including the organizations involved, their relationships to one another, and the authority and responsibility of each organization for carrying out required activities based on the selected software development process. Personnel then are assigned based on their availability and the software project schedule. The software project organization is a substructure of the higher-level project organization shown in the Project Plan. The software project organization is documented in the Project Organization and Resources section of the Software Development Plan (SDP) (see Appendix E).

Roles and Responsibilities

The project software manager determines the organizational structure and assigns personnel to the project.

Office of Safety, Environment and Mission Assurance (OSEMA) representatives who work with the project software manager to determine OSEMA’s role.

Controls

The availability of personnel in the organization.

The Project Plan showing the project’s higher-level organizational structure.

The software project schedule (see activity 1.1.1.1.5 Develop Software Schedule) and the work breakdown structure (WBS) (see activity 1.1.1.1.2 Develop Work Breakdown Structure).

Inputs

The software development process.

Procedures

1) The project software manager selects a software configuration management (SCM) manager, software engineering manager, and software test manager based on the available personnel, and the selected software development process and software project schedule. For projects with multiple computer software configuration items (CSCI), multiple software engineering managers may be chosen and assigned one or more CSCIs. The software quality assurance (SQA) personnel are provided by the OSEMA. The project software manager should meet with OSEMA representatives to review the project’s SQA needs and level of OSEMA support. For small projects, a software developer or the project software manager may assume the SCM manager’s role. The software test manager and software testers must be individuals other than the software engineering manager and software developers [SEI, 1993, pp. L3-92].

When selecting personnel, the project software manager must verify that the individuals have the proper background for their roles (as defined in the Organizational Training Plan (OTP) (see Appendix E) (see activity 4.3 Develop And Provide Organizational Training)) or that the proper training can be rapidly acquired (see activity 1.1.4 Plan And Provide Software Project Training). Additionally, personality traits should be considered when selecting individual personnel. [Sommerville, 1992, pp. 31-38] provides an overview of group dynamics issues among software development personnel. For small projects, the project software manager may select the individual software developers and testers. For larger projects, selection of lower-level personnel is left up to the software engineering manager and the software test manager. Figure 1.1.1.2.1-1 shows a typical NASA Langley Research Center (LaRC) project organization.

� EMBED PowerPoint.Show.4 ���

Figure 1.1.1.2.1-1 Software Project Organization

2) The responsibility of each role and group (e.g., the software engineering test manager and staff) should be clearly defined in terms of products from the WBS (e.g., Software Configuration Management Plan (SCMP), Flight CSCI) and milestones associated with each product (e.g. draft and final deliveries) from the software project schedule.

3) The software project organization and assigned personnel and their responsibilities are documented in the Project Organization and Resources section of the SDP.

Outputs

The software project organization, assigned personnel, and their responsibilities documented in the Project Organization and Resources section of the SDP.�1.1.1.2.2	Identify Software Engineering Environment

Overview

In this activity, the project software manager, assisted by the software engineering process group (SEPG), establishes a software engineering environment consisting of facilities, equipment, and tools to support the software project.

Roles and Responsibilities

The project software manager and software engineering staff manager (if assigned) establishes the software engineering environment to meet the needs of the software project within cost, schedule, and performance constraints.

The system administrator installs the software engineering environment.

The project manager approves the acquisition of new hardware and software.

The SEPG may be consulted for information on new tools and technologies.

Controls

Budget available for purchasing new hardware and software.

Software project scope identifying the products that must be developed and the software project schedule.

Inputs

Commercial tool information to be evaluated.

Risk management tracking information to be acquired.

Procedures

1) Based upon the software products to be developed (as identified in the work breakdown structure (WBS)) and the software schedule, the project software manager and software engineering manager determine the appropriate software engineering environment and risk management tracking mechanism to be used. The project software manager should consult Appendix D - Tools of this Guidebook and the SEPG to determine what tools are currently available for use within the organization.

2) If the tools available within the organization are unsuitable for the project, the project software manager and software engineering manager should, with the help of the SEPG, determine what commercial tools are available and evaluate them (see activity 4.1.3 Determine Improvement Goals And Potential Changes). The project software manager also may consult [LHB 5300.4, pp. 5-1 to 5-6], Software Technology Support Center reports, and Internet news groups for more information on commercially available tools. The project software manager consults with the project manager, as well as the SEPG, to determine the available budget for acquiring new hardware and software, and updates the WBS (see activity 1.1.1.1.2 Develop Work Breakdown Structure) and software project cost estimates accordingly (see 1.1.1.1.4 see activity Perform Cost Estimates).

3) When acquiring new hardware and software, the project software manager should consider the need to purchase hardware spares, and the correct number of licenses, as well as budgeting for future maintenance. The system administrators who are responsible for installing the new hardware and software should be notified of the expected arrival date for installation planning purposes.

4) The project software manager documents the selected software engineering environment in the Software Engineering Environment section of the Software Development Plan (SDP) (see Appendix E). An example of a software engineering environment is described in Figure 1.1.1.2.2-1.

Figure 1.1.1.2.2-1 Example of Software Engineering Environment

Vendor�Product�Version Number�CSCI��Microsoft�DOS�6.2�Flight, Ground Support��Microsoft�Windows�3.11�Flight, Ground Support��Microsoft�Windows NT�3.51�Flight, Ground Support��Microsoft�Word�6.0�Flight, Ground Support��Microsoft�Powerpoint�4.0�Flight, Ground Support��Microsoft�Access�2.0�Flight, Ground Support��Microsoft�Excel�5.0�Flight, Ground Support��Microsoft�Project�4.0�Flight, Ground Support��Intersolv�PVCS(�5.2�Flight, Ground Support��Mix�Power C�2.12�Ground Support��Mark V�Object Maker�3.4�Flight��Alsys�Ada Compiler�5.12�Flight��Hardware commercial-off-the-shelf (COTS) platform - Gateway 2000 PC (Intel 486-based)

5) The system administrator(s) installs and checks out the acquired software and/or hardware.

Outputs

The software engineering environment acquired and installed for use during the project.

The description of the software engineering environment documented in the Software Engineering Environment section of the SDP.

�1.1.1.2.3	Identify Software Products For Reuse

Overview

In this activity, the project software manager, assisted by the software engineering process group (SEPG), identifies software assets generated on other projects or available from outside sources as candidates for reuse on the current software project. The project software manager also identifies any potential candidates for future reuse that will be developed during this software project. Planned reuse is documented in the Reusable Software Products section of the Software Development Plan (SDP) (see Appendix E).

Roles and Responsibilities

The project software manager and software engineering manager promotes software reuse throughout the software project, coordinates research of reuse libraries to identify candidate software life cycle products, and selects reusable assets to incorporate into the software project.

The SEPG may assist the project software manager in identifying and acquiring, and/or submitting software products for reuse.

Controls

MIL-STD-498, Appendix B, pp. 33-35, specifying criteria for evaluating reusable software products.

Department of Defense (DoD) Program Manager’s Reuse Issues Handbook, 1996, discussing issues of acquiring and incorporating reusable software.

Inputs

Reusable software products for evaluation.

Procedures

For general information on software reuse, the project software manager should review the DoD Program Manager’s Reuse Issues Handbook, and Appendix B of MIL-STD-498.

1) Based on the system’s functionality, the project software manager seeks to identify reusable software products for use on the software project. These products may include the software, as well as documentation (e.g., detailed design documents, test procedures). Common areas of reuse are device drivers, math and string libraries, graphical displays, and common data structure operations.

2) The project software manager should consult with the SEPG to determine what reusable software products are available in the organization’s asset library or via Government or commercial asset libraries. One such NASA-sponsored library is the Computer Software Management and Information Center (COSMIC) operated by the University of Georgia. Three major DoD libraries are: the Defense Software Repository System (DSRS), the Comprehensive Approach to Reusable Defense Software (CARDS) library, and the Asset Source for Software Engineering Technology (ASSET). A commercial source of reusable Ada products is the Generic Reusable Ada Components for Engineering (GRACE) library.

3) Identified reusable products should be evaluated for use on the project based on the evaluation criteria provided by MIL-STD-498 Appendix B.

4) Once it is determined that a product will be reused, it is acquired and placed under software configuration management (SCM) (see activity 2.1 Place Software Products Under Software Configuration Management). The work breakdown structure (WBS) (see activity 1.1.1.1.2 Develop Work Breakdown Structure) and cost estimate (see activity 1.1.1.1.4 Perform Cost Estimating) are updated, if applicable.

5) The project software manager and software engineering manager, together with the SEPG, also should consider developing reusable software products as part of this software project effort. The SEPG should determine what products are most likely to be reused on future projects with the organization, and assist the project software manager and software engineering manager in determining the standards and procedures for developing reusable products and submitting them to a reuse library.

6) The project software manager documents the reusable products to be developed and those that will be reused during the project in the Reusable Software Products section of the SDP.

Outputs

The software products identified for reuse (both on this project and to be developed for future projects) that are documented in the Reusable Software Products section of the SDP.

The software products for reuse that were acquired and placed under SCM.

�1.1.1.3		Define Software Development Process

Overview

In this activity, the software development process for the project is tailored from the organization’s standard software process (see the Software Development Volume). This activity covers all planning aspects of software development, from the software developer’s role in system requirements and design definition, through software implementation and system integration and testing. A software development life cycle approach and any intermediate builds are selected.

Roles and Responsibilities

The project software manager and software engineering manager completes the sections of the Software Development Plan (SDP) (see Appendix E) defining the software development process.

Controls

The Project Plan which defines the project scope, schedule, and system requirements, design, integration and testing approaches.

The organization’s standard software process which defines the standard software development process.

Inputs

The Software Project Scope sections of the SDP that define the software products to be delivered, the size of the software to be developed, and the schedule (see activity 1.1.1.1 Determine Software Project Scope).

The software project organization and resources that must be factored into planning the development activities (see activity 1.1.1.2 Identify Software Project Organization And Resources).

Procedures

The software development process is tailored from the organization’s standard software process (see the Software Development Volume). The following subactivities, which collectively define the software development process, are iteratively performed by the project software manager and software engineering manager, and their results are documented in the tailored SDP:

1) 1.1.1.3.1 Define Participation In System Requirements And Design. The goals of the system requirements and design phases are to produce a clear, complete, consistent, and testable specification of the system’s technical requirements, and allocates them to the various disciplines. In this activity, the organization’s role in the system requirements and design is identified and documented in the SDP, in compliance with the system requirements design approach as documented in the Project Plan.

2) 1.1.1.3.2 Define Plans For Performing Detailed Software Development Activities. In this activity, a software development life cycle approach and any intermediate builds are selected, based upon the software project’s scope, organization, and resources. From these selections, the software development activities are defined and documented in the SDP.

3) 1.1.1.3.3 Define Participation In Hardware/Software Integration And Testing. During the hardware/software integration and testing project phase, system components (i.e., hardware and software) are integrated and tested. In this activity, the software organization’s role in this integration and testing is identified and documented in the SDP, in compliance with the integration and testing approach documented in the Project Plan.

Outputs

The software development process defining the software organization’s participation in system requirements and design, plans for performing detailed software development activities, and hardware/software integration and testing. These are all documented in the applicable subsections of the Plans for Performing Detailed Software Development Activities section of the SDP.

�1.1.1.3.1	Define Participation In System Requirements And Design

Overview

During the system requirements and design phases, the software developer(s) helps produce clear, complete, consistent, and testable specifications for the system’s technical requirements, and helps allocate them to various disciplines (e.g., optics, hardware). In this activity, the software developer’s role in system requirements and design is identified and documented in the Software Development Plan (SDP) (see Appendix E).

Roles and Responsibilities

The project software manager, together with the software engineering manager, completes the System Requirements Analysis and System Design sections of the SDP. Through this task, the project software manager defines and documents the software developer’s role in system requirements and design.

Controls

See parent activity 1.1.1.3 Define Software Development Process.

Inputs

See parent activity 1.1.1.3 Define Software Development Process.

Procedures

The approach to identifying and designing system requirements, like the requirements, themselves, is expected to vary (i.e., be tailored from the organization’s standard software process) to meet the specific needs of each project for which software is a major component. While the project manager controls the system requirements and design, the project software manager and software engineering staff play key supporting roles.

When documenting this in the SDP, the project software manager covers suggested analysis strategies. The project software manager also determines software development support in terms of labor hours, updating cost estimates, and securing project management support and funding for software personnel’s involvement in system activities. By doing this tailoring, the project software manager defines and documents the software developer’s role. It is very important to involve software personnel early in the project because all software-related factors will be considered from the start, thus, creating better project and software designs.

The system engineering group, which includes managers and technical staff, some of whom are software developers, iteratively develops the system requirements and design (see activity 3.1 Participate In Systems Requirements And Design). Subactivity 3.1.1 Define System Requirements may be iteratively performed with subactivity 3.1.2 Define System Design. The project software manager should understand both of these subactivities before completing this activity, which focuses on documenting in the SDP how the activities of the Software Development Volume will be tailored to meet the project’s requirements.

The software developer, together with the system engineering group, helps determine what system requirements should be allocated to software and the feasibility of these requirements. The software developer informs the other group members of the software’s limitations and constraints. It may be necessary for the software developer to perform prototyping in areas that seem to be high risk. During this effort, the software developer also gains an understanding of the system, its goals, and usage. The software developer has the same responsibilities when helping to determine system design.

The project software manager, together with the software engineering manager, performs the following steps to complete SDP sections that document the approach to participating in system requirements analysis and design that is tailored to each project:

1) The software project scope and software project organization and resources are reviewed to generally understand the software project.

2) The software developer’s approach to participating in systems requirements analysis is defined by tailoring activity 3.1.1 Define System Requirements. In general, the software developer will participate in discussions focusing on defining the requirements. The project software manager or project manager may optionally choose a formal methodology for the software developers to follow in defining the systems requirements. The methods will vary, based on the project’s size and the experience of the system engineering group. Other requirements-related issues, such as the software developer’s role in analyzing user input for operational concepts, should be considered.

3) All decisions regarding the software developer’s approach to systems requirements definition are documented in the System Requirements Analysis section of the SDP.

4) Step 2 is repeated when defining the software developer’s role in system design by tailoring activity 3.1.2 Define System Design. As in requirements analysis, the software developer helps determine and select a system design (after considering one or more possibilities). Other design-related issues, such as the software developer’s role in system-wide design decisions, should be considered. All design-related decisions, which impact the software development effort, are documented in the System Design section of the SDP.

Outputs

The defined approach for the software developer’s participation in system requirements and design. This is documented in the Systems Requirements Analysis and System Design sections of the SDP.

�1.1.1.3.2	Define Plans For Performing Detailed Software Development Activities

Overview

In this activity, a software development life cycle approach and any intermediate builds are selected based upon the software project’s scope, organization, and resources. From these selections, the software development activities are defined and documented in the Software Development Plan (SDP) (see Appendix E).

Roles and Responsibilities

The project software manager completes the SDP sections defining the software development process.

The software engineering manager works with the project software manager to tailor the Software Development Volume of this Guidebook and complete the SDP sections defining the software development process.

Controls

See parent activity 1.1.1.3 Define Software Development Process.

Inputs

See parent activity 1.1.1.3 Define Software Development Process.

The System Requirements Analysis and System Design sections of the SDP that define the systems engineering approach to be followed by the software developers.

Procedures

This activity focuses on tailoring the Software Development Volume activities to the project’s software development tasks. Thus, the project software and software engineering managers should be very familiar with activity 3.2 Perform Software Development and all of its subactivities. The Software Development Volume tailoring is documented in the SDP.

When documenting software project plans in the SDP, the project software and software engineering managers cover how activity results will be recorded and the preparation of any associated deliverables, if necessary. When deviating from the organizational standard software process, the managers submit a Request for Deviation/Waiver (see Appendix C) (see activity 4.1.1 Review Request For Deviation/Waiver). These Requests for Deviation/Waiver are necessary in instances such as using new techniques and/or new tools, or when there is a lack of resources. The following steps are performed to complete SDP sections describing the approach for performing detailed software development activities:

1) The project software and software engineering managers review the software project scope and software project organization and resources. The managers also review the System Requirements Analysis and System Design sections of the SDP. Both sets of documentation may help the managers gain a better understanding of the software project.

2) The project software and software engineering managers select a software life cycle for the project. “Software life cycle” is the period of time that begins when a software product is conceived, and ends when the software is no longer available for use [IEEE 610.12-1990, 1991]. A life cycle is typically divided into phases, which may or may not coincide with the system life cycle phases. Five life cycle models are recommended for use on NASA projects: waterfall, incremental, evolutionary or spiral, package-based development, and legacy system maintenance models. The NASA Software Management Guidebook [NASA-GB-001-96] describes each model and provides guidance for selecting an appropriate model for a project. Once the life cycle is determined, cost and schedule estimates should be updated accordingly.

3) A “software build” is an operational version of a system or component that incorporates a specified subset of the capabilities that the final product will have [IEEE 610.12-1990, 1991]. Based on the project size, schedule, and requirements, the project software and software engineering managers may choose to identify different software builds. These builds should be noted as milestones and/or deliveries in the schedule (see activity 1.1.1.1.5 Develop Software Development Schedule) and taken into consideration when planning further tasks (i.e., the remaining steps in this activity) for the software project.

4) The software developer(s)’ approach to software requirements definition is decided as the managers tailor activity 3.2.1 CSCI Software Requirements Analysis. The managers decide which requirements analysis method to use from those suggested in activity 3.2.1.1 Perform Software Requirements Definition. All decisions regarding software requirements definition are documented in the Software Requirements Analysis section of the SDP.

5) The project software and software engineering managers tailor activities 3.2.2 CSCI Architectural Design and 3.2.3 Develop Detailed Design for this project’s needs. The managers decide what design method to from those suggested in activities 3.2.2.1 Develop Architectural Design and 3.2.3.1 Develop Unit Detailed Design. CSCI-wide design decisions, and CSCI architectural and detailed designs are considered, and all decisions regarding software design are documented in the Software Design Section of the SDP. Because all design decisions are not made at one time, the SDP should be regularly updated as these types of decisions are made.

6) Software implementation and unit testing are considered as the project software and software engineering managers tailor activity 3.2.4 Software Implementation and Unit Testing. Coding standards are selected as specified in activity 3.2.4.1.1 Code Unit. The entire unit implementing and testing life cycle should be considered: software implementation, preparing for unit testing, performing unit testing, revision and re-testing, and analyzing and recording unit test results. All decisions are documented in the Software Implementation and Unit Testing section of the SDP.

7) The managers tailor activity 3.2.5 Unit Integration And Testing. Project size, unit size, and staff size are considered when tailoring the activity. The areas of: preparation, integration, testing, revision and re-testing, and recording also are considered. The testing method and documentation may be very informal depending on size factors, but the results are always documented in some manner. All decisions are documented in the Unit Integration and Testing section of the SDP.

8) Activity 3.2.6 CSCI Qualification Testing is tailored by the project software and software engineering managers. Embedded flight software will not undergo this testing as it is required to be integrated with the hardware before testing can take place. Ground support, mission operations, and post-mission data analysis software are candidates for CSCI qualification testing. As with unit testing, consideration is given to the areas of preparation, integration, testing, revision and re-testing, and recording. All decisions are documented in the CSCI Qualification Testing section of the SDP.

Outputs

The software development process that defines plans for performing detailed software development activities. This is documented in the Software Requirements Analysis, Software Design, Software Implementation and Unit Testing, Unit Integration and Testing, and CSCI Qualification Testing sections of the SDP.

�1.1.1.3.3	Define Participation In Hardware/Software Integration And Testing

Overview

During this project phase, system components (hardware, software) are integrated and tested. In this activity, the software developer’s role in this integration and testing is identified and documented in the Software Development Plan (SDP) (see Appendix E) in accordance with the Project Plan.

Roles and Responsibilities

The project software manager completes the sections of the SDP defining the software development process.

Controls

See parent activity 1.1.1.3 Define Software Development Process.

Inputs

See parent activity 1.1.1.3 Define Software Development Process.

Completed subsections of the Plans For Performing Detailed Software Development Activities section of the SDP.

Procedures

This activity tailors the Software Development Volume activities to the project’s hardware/ software integration and testing tasks, in accordance with the approach defined in the Project Plan. Thus, the project software manager should be very familiar with activity 3.3 Participate In System Integration And System Qualification Testing. Some subactivities in this Software Development Volume activity are performed concurrently with subactivities of activity 3.1 Participate In Systems Requirements And Design. The project manager provides directions for the tailoring, and controls the hardware/software integration and testing. Selected members of the software engineering group, working as members of the system engineering group, play supporting roles. The project software manager takes all of this into consideration when planning the approach for tailoring.

The Software Development Volume tailoring is documented in the SDP using the following steps:

1) The project software manager reviews the software project scope and software project organization and resources. The project software manager also reviews the completed subsections of the Plans For Performing Detailed Software Development Activities section of the SDP. Both sets of documentation may help the project software manager gain a better understanding of the software project.

2) The project software manager tailors subactivity 3.3.1 Participate In Hardware/Software Integration. In this subactivity, the software developer and/or testers participate in developing the integration test cases and procedures, performing integration, and testing the integrated component(s) in accordance with the approach specified in the Project Plan . The project software manager also considers the software developer’s role in preparing, testing, revising, retesting, and recording results and associated actions. The tailored approach is documented in the CSCI/HWCI Integration and Testing section of the SDP.

3) Subactivity 3.3.2 Participate In System Qualification Testing is tailored by the project software manager. In this subactivity, the software developer, again as a member of the system engineering group, helps develop and execute test cases and procedures, and record and analyze test results, in accordance with the approach specified in the Project Plan. The tailored approach is documented in the System Qualification Testing section of the SDP.

Outputs

The software development process defining the software developer’s participation in hardware/software integration and testing. This is documented in the CSCI/HWCI Integration And Testing and System Qualification Testing sections of the SDP.

�1.1.1.4		Plan Risk Management

Overview

In this activity, the software project’s approach to risk management is planned and defined, based upon the Software Engineering Institute’s (SEI) Continuous Risk Management Guidebook [SEI, 1996].

Roles and Responsibilities

The project software manager is responsible for planning the risk management activities for the software project.

The software engineering manager and software test manager may be asked to participate in the risk management planning effort.

The software engineering process group (SEPG) members may be asked to serve as risk management consultants or facilitators.

The project manager is responsible for risk management activities for the software project [SEI, 1996].

Controls

SEI’s Continuous Risk Management Guidebook which describes the risk management process to be implemented.

The Project Plan which may specify project-level, risk management activities with which the software risk management program should be coordinated.

Inputs

The software project organization and resources that determine how the risk management roles will be assigned

Procedures

1) The project software manager, together with the software engineering manager and the software test manager, should review the Project Plan to understand any existing risk management policies, methods, or tools. The project software manager must determine if any changes should be made in the SEI’s Continuous Risk Management approach to adapt to on-going, project-level, risk management activities. If these are non-existent, the project software manager should meet with the project manager to discuss implementing risk management at the project-level. SEPG members may be consulted and asked to serve as risk management facilitators.

2) It is assumed that the risk management approach, as defined in the SEI’s Continuous Risk Management Guidebook, will be implemented on the project. If this is not the case, a Request for Deviation/Waiver (see Appendix C) should be submitted to the SEPG (see activities 2.2.1 Request Deviation/Waiver and 4.1.1 Review Request for Deviation/Waiver).

Risk management roles and are assigned based on upon the software project’s organization and personnel (see activity 1.1.1.2.1 Identify Software Project Organization). Risk management training is planned and conducted (see activity 1.1.4 Plan And Provide Software Project Training), and risk tracking mechanisms are selected, acquired, and installed (see activity 1.1.1.2.2 Identify Software Engineering Environment). The work breakdown structure (WBS) (see activity 1.1.1.1.2 Develop Work Breakdown Structure), cost estimate (see activity 1.1.1.1.4 Perform Cost Estimating), and schedule (1.1.1.1.5 Develop Software Schedule) should be updated to include the acquisition of the risk management tracking mechanism(s). The Risk Information Form (see Appendix C) is used to document risks.

3) The software project’s approach to risk management is documented in the Risk Management section of the Software Development Plan (SDP) (see Appendix E).

Outputs

The software project’s approach to risk management is documented in the Risk Management section of the SDP.

The risk management tracking mechanism which has selected and installed.

�1.1.1.5		Determine Metrics To Be Collected

Overview

In this activity, the software metrics to be collected, collection forms, and reports to be generated on the software project are identified in coordination with the software engineering process group (SEPG), which maintains the software metrics database.

Roles and Responsibilities

The project software manager is responsible for coordinating the project’s software metric collection process with the SEPG.

The SEPG is responsible for maintaining the software metrics database, providing access to software project members, and generating reports for the project software manager.

The software engineering manager (if assigned) may be consulted as to metrics and reports needed on the software development.

The software test manager (if assigned) may be consulted as to metrics and reports needed for software testing.

Controls

The Project Plan which may request specific software-related metrics and reports to be generated.

Inputs

The organization’s standard set of software metrics, forms, and reports as documented in the NASA Langley Software Metrics Database User’s Guide.

The software project’s risk management approach (see activity 1.1.1.4 Plan Risk Management) as documented in the Software Development Plan (SDP) (see Appendix E).

The software project’s selected software development process (see activity 1.1.1.3 Determine Software Development Process) as documented in the Plans for Performing Detailed Software Development Activities section of the SDP.

Procedures

1) The project software manager, together with the software engineering manager and software test manager, reviews the standard set of collected software development and testing metrics, collection forms, and reports (as defined in the NASA Langley Software Metrics Database User’s Guide) to determine if they will adequately meet the project’s needs, based on the software project’s risk management approach and development process. The project software manager also should consider any metric reporting required by the Project Plan or requested by the project manager. SEPG member(s) may be consulted to provide information on the metric database collection and reporting capabilities. If it is determined that additional reports, metrics, or changes to the forms are required, the project software manager submits a Software Change Request (SCR) (see Appendix C) to the SEPG (see activity 4.2.4 Maintain Process Standards).

2) The project software manager documents the metrics to be collected, the collection forms to be used, and reports required by the software project in an appendix of the Software Development Plan (SDP) (see Appendix E).

Outputs

The software project’s tailored metric collection program consisting of a tailored set of metrics, forms, and reports which was coordinated with the SEPG and documented in an appendix of the SDP.

�1.1.2		Plan Software Configuration Management

Overview

This activity describes all of the software configuration management (SCM) planning activities performed at project startup. These include determining the SCM needs; identifying the SCM activities that must be performed; setting up the SCM environment; developing the naming and numbering scheme, and the directory structure; creating a SCM Plan (SCMP) (see Appendix E), and providing SCM training.

Roles and Responsibilities

The project software manager provides information on the computer software configuration items (CSCI), schedule, and development activities to the SCM manager (this information may be recorded in the preliminary Software Development Plan (SDP) (see Appendix E)). The project software manager also is responsible for approving the completed SCMP.

The SCM manager performs all SCM planning for the project.

The system administrator aids in setting up the SCM directories and any other SCM tools used on the project.

Controls

The organization’s standard software process represented by this Guidebook.

The SCMP Data Item Description (DID) (see Appendix E).

Inputs

The preliminary SDP, which provides information on the products to be developed, the software engineering environment, and the complexity and type of software being developed.

Procedures

The SCM manager, assisted by the project software manager and the system administrator, sequentially performs the following subactivities, complying with the organization’s standard software process and the SCMP DID, and using the information provided in the preliminary SDP.

1) 1.1.2.1 Determine Project’s Software Configuration Management Needs. In this subactivity, the SCM manager performs a needs analysis, identifies the reports and forms to accomplish SCM, and determines the set of software products that will be controlled.

2) 1.1.2.2 Determine Project’s Software Configuration Management Activities. In this subactivity, the SCM manager determines SCM activities that must be performed and the individuals performing the activities. These activities include conducting Software Control Board (SCB) meetings, making backups of the software products, participating in the change management process, and conducting configuration audits.

3) 1.1.2.3 Select Software Configuration Management Tools. In this subactivity, the SCM manager selects SCM tools for use on the project. SCM tools fall into two general categories: 1) tools to track product status, Software Trouble Reports (see Appendix C), requests, etc., and 2) version-control tools (e.g., Polytron Version Control System (PVCS()).

4) 1.1.2.4 Develop Naming And Numbering Standards And Directory Structure. In this subactivity, the SCM manager determines the project’s naming and numbering standards. The SCM manager also determines the directory structures (and associated read and write privileges) to be used during the project to protect completed software products and to help develop new software products.

5) 1.1.2.5 Develop Software Configuration Management Plan. In this subactivity, the SCM manager completes the SCMP, most of which the SCM manager has developed in the preceding subactivities.

6) 1.1.2.6 Provide Software Configuration Management Training. In this subactivity, the SCM manager determines the SCM training needed by the software project group. After SCM processes are established and SCM tools are selected, all software developers and testers, as well as the managers and control board members, receive training in SCM processes and tools, and familiarize themselves with the SCMP.

Outputs

The project’s SCMP which has been approved by the project software manager.

The project’s directory structure which has been documented in the SCMP and implemented.

The SCM tools selected for use on the project.

An SCM training plan which has been incorporated into the Project’s Training Plan.

�1.1.2.1		Determine Project Software Configuration Management Needs

Overview

In this activity, the software configuration management (SCM) manager determines the SCM needs of the project. The SCM manager performs a needs analysis, and identifies the reports and forms to accomplish SCM, and the set of software products to be controlled.

Roles and Responsibilities

The SCM manager determines the level of SCM needed on the project, the SCM reports and forms to be used, and the set of products that must be placed under SCM.

The project software manager provides information on the computer software configuration items (CSCI) and the project’s driving factors (i.e., software size, staff size, complexity, and criticality) to the SCM manager.

Controls

See parent activity 1.1.2 Plan Software Configuration Management.

Input

A preliminary Software Development Plan (SDP) (see Appendix E), which provides information on the software engineering environment and the project’s products, such as the complexity and type of software being developed.

Procedures

The SCM manager, assisted by the project software manager, performs the following subactivities in sequential order, using the information provided in the System Overview, Plans for Performing Detailed Software Development Activities, and Project Organization and Resources sections of the preliminary SDP:

1) 1.1.2.1.1 Perform Software Configuration Management Needs Analysis. In this activity, the SCM manager determines the level of SCM needed for each CSCI on the project.

2) 1.1.2.1.2 Determine Reports And Forms Required. In this subactivity, the SCM manager, project software manager define the set of mandatory SCM status reports and forms to be used throughout the software project.

3) 1.1.2.1.3 Identify Products Under Software Configuration Management Control. In this activity, the SCM manager identifies the software products that must be placed under SCM or tracked. These include: all documents, plans, and code, as well as commercial off-the-shelf (COTS) products.

Outputs

The completed Software Configuration Management Needs Form (see Appendix C) for each CSCI, which indicates the level of SCM that will be required during the project.

The set of SCM forms, reports, and metrics that will be used and reported during the project.

The software product list (i.e., the list of software products to be placed under SCM during the project).

�1.1.2.1.1	Perform Software Configuration Management Needs Analysis

Overview

In this activity, the software configuration management (SCM) manager determines the level of SCM needed for each computer software configuration item (CSCI) on a project. The SCM manager bases this determination on a set of driving factors: software size, staff size, complexity, and criticality. The SCM manager assigns a rating to each driving factor, and uses this rating to calculate a numerical value known as the “configuration management (CM) needs index.” The table provided in the Procedures section suggests a SCM level for a given CM needs index. The SCM manager uses lessons learned from previous projects to tailor this level of SCM to meet the current project’s needs.

Roles and Responsibilities

The SCM manager is responsible for determining the level of SCM needed on the project.

The project software manager provides information on the CSCIs and the project’s driving factors to the SCM manager.

Controls

See parent activity 1.1.2.1. Determine Project’s Software Configuration Management Needs.

Inputs

The preliminary Software Development Plan (SDP) (see Appendix E), which contains estimates and explanations of the software size, staff size, complexity, and criticality of the CSCI being developed.

Procedures

1) The SCM manager obtains estimates of the software size, staff size, and complexity and criticality levels for each CSCI from the project software manager. The SCM manager also may obtain these from a preliminary SDP, if one exists.

2) The SCM manager completes items 1 through 6 on the Software Configuration Management Needs Form, rating each driving factor according to the guidelines in the instructions (see Appendix C). The SCM manager computes the CM needs index, which has a value ranging from 2.5 through 7.5.

3) Table 1.1.2.1.1-1 proposes different levels of SCM for different values of the CM needs index. The SCM manager evaluates the suggested level of SCM for each CSCI, reviewing information from previous projects, lessons learned, and the examples given below to determine the project’s actual SCM needs. The SCM manager then documents these in Item [8] on the Software Configuration Management Needs Form .

If a project consists of multiple CSCIs, the CM needs index may be different for each. Based on the organizational structure and the nature of the CSCIs, the SCM manager may choose to use the same control board structure, backup schedules, or SCM tools for all the CSCIs on the project, regardless of the suggested SCM needs, to maintain continuity throughout the project. If so, the SCM manager documents this in Item [7] on the Software Configuration Management Needs Form.

Table 1.1.2.1.1-1 CM Needs Index

CM Needs Index�Suggested CM Needs�����2.5–3.4�(A project Change Control Board (CCB) to oversee all Configuration Change Requests (CCR) (see Appendix C) submitted by the different disciplines.

(A SCM manager is assigned to the project. This may be one of the developers or the software engineering manager.

(A single, small Software Control Board (SCB) to approve and maintain the status of all software changes. This board consists of the SCM manager, the project software manager, and a Software Quality Assurance (SQA) representative. The board meets as needed.

(Regular backups (preferably daily) of all software products.��3.5–5.4�(A project CCB to oversee all CCRs submitted by the different disciplines.

(A SCM manager is assigned to the project.

(A single SCB to approve and maintain the status of all software changes. This board will consist of the SCM manager, SQA representative, project software manager, and software engineering manager(s).

(The SCM manager uses a SCM tool to accomplish the following: control software baselines and versions, track commercial off-the-shelf (COTS) products with each baseline, and control all project documentation.

(Automatic, daily backup(s) of all software products.��5.5–7.5�(A project CCB to oversee all CCRs submitted by the different disciplines.

(A SCM manager is assigned to the project.

(A SCB to oversee all Software Change Requests (SCR) (see Appendix C), and a Software Trouble Report Board (STRB) to oversee all Software Trouble Reports, if Software Trouble Report activity is expected to require a separate board.

(The SCM manager performs SCM using a SCM tool to accomplish the following: control software baselines and versions, track COTS products associated with each baseline, and control all project documentation.

(Automatic, daily backup of all software products.��4) Repeat steps 2 and 3 for each CSCI on the project.

5) The SCM manager reviews the actual SCM needs with the project software manager to verify that the data used was correct and to ensure that the project software manager agrees with the findings and recommendations.

6) The SCM manager places the completed Software Configuration Management Needs Form as an appendix to the Software Configuration Management Plan (SCMP). Examples 1 through 6 show completed Software Configuration Management Needs Forms for several projects.

�Example 1:

[1] CSCI Name: Space Shuttle On-Board Software��[2] Driving Factor�Rating�Estimated Values������[a] Software Size�Large (3)�Over 500K lines of code (LOC)��[b] Staff Size�Large (3)�More than 240 people��[c] Complexity Level�High (3)�Hundreds of software modules, complex requirements, and interaction with other systems��[d] Criticality Level�High (3)�Loss of vehicle and crew is possible��[3] Computed CM Needs Index�7.5���[4] Comments: N/A��[5] Actual SCM Needs:

This project is supported with the following: multiple control boards meeting weekly, an SCM department, a full SCM database, SQA reviews and audits, and customer involvement with the SCM process (e.g., the customer may be a member of any control boards and may take part in any reviews) and insight into all SCM-controlled products (i.e., the customer receives drafts and final versions of all products created). All work items are automatically backed up daily.��Example 2:

[1] CSCI Name: Austin Device Drive Software��[2] Driving Factor�Rating�Estimated Value������[a] Software Size�Small (1)�Fewer than 10K LOC��[b] Staff Size�Medium (2)�Fewer than 25 people��[c] Complexity Level�High (3)�Complex requirements and complex interactions with other CSCIs and operating systems��[d] Criticality Level�Medium (2)�Failure can result in loss of some capability��[3] Computed CM Needs Index�5.5���[4] Comments: N/A��[5] Actual SCM Needs:

This project is supported with a single SCB and a project-level CCB. The SCB consists of the lead software developer, lead software tester, and project software manager. This board meets regularly. SCM is performed using a project-wide tool, Polytron Version Control System (PVCS(), to control versions. The system administrator provides regular backups of all developed software.���Example 3:

[1] CSCI Name: Lidar Inspace Technology Experiment (LITE) Flight Project��[2] Driving Factor�Rating�Estimated Value������[a] Software Size�Medium (2)�Fewer than 50K LOC��[b] Staff Size�Medium (2)�Fewer than 25 people��[c] Complexity Level�Medium (2)�Fewer than 50 software modules; complex interaction with other systems��[d] Criticality Level�High (3)�Failure can result in loss of all mission objectives��[3] Computed CM Needs Index�6.0���[4] Comments: N/A��[5] Actual SCM Needs:

This project is supported with an SCB and a project-level CCB to approve and maintain the status of all software changes. These boards meet as required. SCM is performed using a project-wide tool, PVCS(, to control versions. The system administrator backs up all developed software on a daily basis.��Example 4:

[1] CSCI Name: LITE Ground Project��[2] Driving Factors�Ratings�Estimated Values������[a] Software Size�Medium (2)�Fewer than 50K LOC��[b] Staff Size�Small (1)�Fewer than 6 people��[c] Complexity Level�Medium (2)�Fewer than 50 modules, complex code, interaction with other systems��[d] Criticality Level�Medium (2)�Failure can result in loss of some capability��[3] Computed CM Needs Index�4.5���[4] Comments: N/A��[5] Actual SCM Needs:

Project support will be the same as in the LITE flight project example to maintain consistency throughout the project.��Example 5:

[1] CSCI Name: LITE Mission OPS Project��[2] Driving Factors�Ratings�Estimated Values������[a] Software Size�Medium (2)�Fewer than 50K LOC��[b] Staff Size�Small (1)�Fewer than 6 people��[c] Complexity Level�Medium (2)�More than 50 modules, complex code, interaction with other systems��[d] Criticality Level�Medium (2)�Failure can result in loss of some capability��[3] Computed CM Needs Index�4.5���[4] Comments: N/A��[5] Actual SCM Needs:

Project support will be the same as in the LITE flight project example to maintain consistency throughout the project.��Example 6:

[1] CSCI Name: Materials In Devices As Superconductors (MIDAS)��[2]Driving Factors�Ratings�Estimated Values������[a] Software Size�Small (1)�Fewer than 10K LOC��[b] Staff Size�Small (1)�Only 2 people��[c] Complexity Level�Medium (2)�More than 10 modules��[d] Criticality Level�High (3)�Failure can result in loss of all mission objectives.��[3] Computed CM Needs Index�5.25���[4] Comments:

The MIDAS CSCI is a small project developed by two people.��[5] Actual SCM Needs:

This project is supported with project-level and software-level CCBs to approve and maintain the status of all software changes. These boards meet as needed. It is recommended that a SCM tool (e.g., PVCS() be used to control versions. Backups of all developed software are performed on a daily basis. Because the staff size is extremely small, the role of SCM manager may be performed by the project software manager or a developer.��Outputs

The completed Software Configuration Management Needs Form which is included as an attachment in the SCMP.

�1.1.2.1.2	Determine Reports And Forms Required

Overview

In this activity, the software configuration management (SCM) manager, project software manager, and one or more software engineering managers define the set of mandatory SCM status reports and forms to be used throughout the software project. This activity ensures that the required reports and forms meet the needs of the project.

Roles and Responsibilities

The SCM manager reviews the blank SCM forms with the project software manager and software engineering managers to determine if the forms meet the needs of the project, and to identify any required modifications. The SCM manager also reviews the standard set of SCM metrics (see activity 1.1.1.5 Determine Metrics To Be Collected) with the project software manager. The SCM manager and project software manager determine what metrics for SCM are appropriate for the software project, how they will be collected and recorded (e.g., report format), and the rate of reporting (e.g., monthly or weekly).

The project software manager reviews all SCM forms, metrics, and reports from the SCM manager, and verifies that they are adequate for the project. The project software manager also may facilitate the tailoring of forms.

One or more software engineering managers are responsible for reviewing and understanding all materials from the SCM manager, and providing feedback concerning possible improvements and any special needs of the project.

Controls

See parent activity 1.1.2.1 Determine Project’s Software Configuration Management Needs.

Inputs

The standard set of forms to complete and metrics to collect, as defined in Appendix C of this Guidebook and the Software Metrics Database User’s Guide.

Procedures

1) The SCM manager distributes the following to the project software manager, and one or more software engineering managers:

Copies of and instructions for completing the standard Software Change Request (SCR), Software Trouble Report, Promotion Notification Form (PNF), Software Control Board Candidate List, and Request for Deviation/Waiver (see Appendix C for forms).

A proposed set of SCM metrics to be collected during the project. The set of metrics proposed in activity 1.1.1.5 Determine Metrics To Be Collected is for a standard project (i.e., one with a configuration management (CM) needs index of 3.5 through 5.5, as defined in subactivity 1.1.2.1.1 Perform Software Configuration Management Needs Analysis). More or fewer metrics may be collected on a project with a different CM needs index.

2) The project software manager and software engineering managers review the SCM forms and metrics to determine if they are suitable for use on the project. A determination also is made as to whether any form needs to be tailored in some way.

3) The SCM manager receives feedback from the project software manager and software engineering managers, and tailors the forms accordingly. If the tailoring is significant (e.g., new form is required), the SCM manager submits a Request for Deviation/Waiver to the software engineering process group (SEPG) (see activities 2.2.1 Request Deviation/Waiver and 4.1.1 Review Request For Deviation/Waiver).

4) The project software manager determines the rate and format of metric reporting to be performed by the SCM manager and staff. For a standard project (i.e., one with a CM needs index of 3.5 through 5.5), biweekly reporting is suggested. For a project with a high CM needs index, weekly reporting may be appropriate. Reporting should be performed at least monthly. It is assumed that the notification of new SCRs, Software Trouble Reports, etc. will be done immediately upon their submission via E-mail.

5) The SCM manager documents the SCM forms selected for the project in the SCM Plan (SCMP). The SCM manager places templates of the forms in the Configuration Control section or a separate appendix to the SCMP (see SCMP Data Item Description (DID) in Appendix E).

6) The SCM manager documents the metrics to be collected, report formats to be used, and any additional reports required by the project software manager in the Configuration Status Accounting section of the SCMP.

Outputs

The SCM forms selected for use during the project, which have been agreed upon by the project software manager, are documented in the SCMP (these forms may have been tailored to accommodate the project’s needs).

If any form has been substantially tailored, a Request for Deviation/Waiver which has been submitted to and approved by the SEPG.

The metrics to be reported by the SCM manager and staff, which have been specified by the project software manager and documented in the SCMP.

�1.1.2.1.3	Identify Products Under Software Configuration Management Control

Overview

In this activity, the software configuration management (SCM) manager identifies the software products that must be placed under SCM or tracked. These include: all documents, plans, and code, as well as commercial off-the-shelf (COTS) products. The product list may be updated as the software products change or become more clearly identified.

Roles and Responsibilities

The SCM manager is responsible for identifying the software products to be placed under SCM.

The project software manager is responsible for providing information on the software engineering environment and the software products to be developed.

Controls

See parent activity 1.1.2.1 Determine Project’s Software Configuration Management Needs.

Inputs

A preliminary Software Development Plan (SDP), which describes the products to be developed (Plans for Performing Detailed Software Development Activities section) and the software engineering environment (Software Development Methods section).

The set of SCM reports and forms identified in activity 1.1.2.1.2 Determine Reports And Forms Required.

Procedures

1) The SCM manager works with the project software manager to compile a list of products to be developed or used in the development effort. The information required to complete this table is in the SDP’s Performing Detailed Software Development Activities and Software Development Methods sections. Using input from the project software manager, the SCM manager may tailor the sample list of software products as shown in Table 1.1.2.1.3-1 to fit the project.

Table 1.1.2.1.3-1 Sample List of Software Products

Software Product List��Product Name�Need for Control�����Documentation���Software Development Plan���Physical Configuration Audit Report���Functional Configuration Audit Report���Software Test Plan���Software Configuration Management Plan���Software Quality Assurance Plan���Software Design Description (architectural)���Software Design Description (detailed)���Software Test Description (unit)���Software Test Report (unit)���Software Test Description (integration)���Software Test Report (integration)���Software Test Description (qualification)���Software Test Report (qualification)���Software Product Specification���Software Version Description���Software User Manual���Software Project Training Plan���n���Forms���Software Change Requests���Request for Deviation/Waiver���Software Trouble Reports������Developed Software���Software Units���Integrated Software Units���Qualified CSCI(s)������COTS Software Products:���Compilers���Document publishing���CASE tools���CM tools���Debuggers���Editors���Operating systems���Word processors������COTS Hardware Products:���Emulators���Simulators���Workstations���Target platforms���Monitoring tools���2) The SCM manager reviews the software product list, answering the following questions for each product.

Is the product schedule critical or high-risk?

Are there any safety considerations with using the product?

Can the product be readily marked to identify it as a separate, controlled item?

Will the product require developing a new design or a significant modification to an existing design?

Does the product have an interface with a product developed under another contract or by another entity?

Will it be necessary to have an accurate record of the product's exact configuration and the status of changes to it during its life cycle?

Can (or must) the product be independently tested?

Is logistic support required for the product?

Does the product incorporate new technologies?

Will the product be delivered to the customer?

3) If the SCM manager answers any of the preceding questions affirmatively for a software product, that product will require software configuration control. As a rule, all COTS products used in the development process should be tracked, and all deliverable software products should be placed under software configuration control.

4) The SCM manager includes the software product list as an appendix to the SCMP.

Outputs

The completed software product list which has been included as an appendix of the SCMP.

�1.1.2.2	Determine Project Software Configuration Management Activities

Overview

The purpose of this activity is to determine what software configuration management (SCM) activities will be required during the project, and who will be responsible for performing them.

Roles and Responsibilities

The SCM manager is responsible for determining the SCM activities needed for the project, and who will perform them. The SCM manager documents this information in the SCM Plan (SCMP) (see Appendix E).

Controls

See parent activity 1.1.2 Plan Software Configuration Management.

Inputs

The completed Software Configuration Management Needs Form (see Appendix C).

The preliminary Software Development Plan (SDP) (see Appendix E), which describes the project’s organization and personnel (Project Organization and Resources section), products to be developed and delivered (SCM section), and project schedule (Schedules and Activity Network section).

Procedures

The SCM manager performs the following subactivities, using information from the Software Configuration Management Needs Form and the preliminary Project Organization and Resources, SCM, and Schedules and Activity Network sections of the SDP.

1) 1.1.2.2.1 Identify Software Configuration Management Roles And Responsibilities. In this subactivity, the SCM manager identifies the SCM roles on the project, and determines how they interface with or participate in the SCM process

2) 1.1.2.2.2 Set Up Software Control Boards. In this subactivity, the SCM manager establishes the control boards for the software project.

3) 1.1.2.2.3 Define Backup And Restore Procedures. In this subactivity, the SCM manager determines the mechanisms that will be used to ensure that all software products under configuration control are backed up and restorable, and the procedure for product restoration.

4) 1.1.2.2.4 Define Change Management Process. In this subactivity, the SCM manager defines the software change management process required to ensure that only approved changes are implemented into any baselined software product.

5) 1.1.2.2.5 Determine Configuration Audits To Be Performed. The purpose of this subactivity is to plan the physical configuration and functional configuration audits.

Outputs

A description of SCM activities to be performed on the project, which is documented in the SCMP.

�1.1.2.2.1	Identify Software Configuration Management Roles And Responsibilities

Overview

In this activity, the software configuration management (SCM) manager identifies the SCM roles on the project and determines how they interface with or participate in the SCM process. The SCM manager documents the results of this activity in the SCM Plan (SCMP). The results will be used later to determine the security and access restrictions on the SCM library, as well as the SCM training needs.

Roles and Responsibilities

The SCM manager is responsible for understanding the personnel resources documented in the Project Organization and Resources section of the Software Development Plan (SDP) (see Appendix E), comparing these to the project’s SCM needs, and assigning appropriate SCM responsibilities to project personnel.

The project software manager is responsible for providing information on the project’s staffing to the SCM manager.

Controls

See parent activity 1.1.2.2 Determine Project’s Software Configuration Management Activities.

Inputs

The completed Software Configuration Management Needs Form (see Appendix C).

The Project Organization and Resources section of the preliminary SDP.

Procedures

1) The SCM manager reviews the Project Organization and Resources section of the preliminary SDP to identify the personnel being assigned to the project.

2) The SCM manager reviews the completed Software Configuration Management Needs Form, which includes the actual SCM needs, to gain a basic understanding of project characteristics, such as the boards that need to be established and the number of developers involved.

3) The SCM manager carefully reviews the Software Configuration Management Volume of this Guidebook to develop a solid understanding of each activity.

4) The SCM manager, with input from the project software manager, lists the roles required on the project. The SCM manager determines if each role will involve any SCM activities and records that information on the list. The names of project personnel (if known) should be included with the roles.

Example 1 is a list of common project roles and includes the names of project personnel assigned to some of them. In this example, the roles marked with asterisks have been identified as involving SCM activities.

�Example 1:

Project manager (Ms. B. Warner)

Project software manager* (Mr. S. Boycan)

Project configuration manager (Ms. J. Mattingly)

Software engineering manager* (Mr. R. Bliss)

 Software configuration management manager* (Mr. M. Lewis)

Software developers* (TBD)

Tester(s)* (TBD)

Systems administrator* (TBD)

Customer (Mr. E. Feigen—SDQ Program)

Software Quality Assurance (SQA) representative* (TBD)

Software librarian* (TBD)

5) The SCM manager determines the SCM responsibility of each project role involving SCM activities (identified in step 4). The project roles and responsibilities described throughout the Software Configuration Management Volume of this Guidebook provide general guidance to the SCM manager as SCM responsibilities are assigned. The SCM manager documents these roles and responsibilities in the Personnel section of the SCMP. Table 1.1.2.2.1-1 shows some typical project roles and the associated SCM responsibilities.

Table 1.1.2.2.1-1 Project Roles And Their Software Configuration Management Responsibilities

Role�SCM Responsibility�����Project software manager�(Chairs the software control board (SCB); approves the project’s SCM tracking system, SCMP, and Software Version Description (SVD) (see Appendix E); participates in the Functional Configuration Audit (FCA) and the Physical Configuration Audit (PCA); provides final approval for baselining software products.��Software engineering manager�(Reviews the directory structure and the naming and numbering scheme; provides preliminary approval for the promotion of software products.��SCM manager�(Writes the SCMP, determines SCM training needs, provides (or manages) SCM training, participates in SCB meetings, manages the project’s SCM tracking system, participates in the FCA and PCA, develops the SVD.��Software developer�(Checks software and documentation out of CM directories and follows CM standards.

(Completes Promotion Notification Forms (PNF), understands directory structure, writes and analyzes Software Change Requests (SCR) and Requests for Deviations/Waivers, analyzes Software Trouble Reports (see Appendix C for forms), participates in SCB meetings, provides input into the SVD.��Tester�(Checks software and documentation out of CM directories and follows CM standards.

(Completes Promotion Notification Forms, understands layout of SCM directories, and completes Software Trouble Reports.��Systems administrator�(Provides operations support for workstations and commercial off-the-shelf (COTS) products, responsible for backing up files and maintaining the project’s SCM tracking system and SCM directory security. ��SQA representative�(Participates in SCB meetings, leads FCA and PCA.��Software configuration manager and staff�(Responsible for maintaining contents of SCM directories and placing products under SCM control.��Output

A list of all project roles that indicates which roles are involved with SCM, and a list or table showing software project roles and their associated SCM responsibilities, which is documented in the Personnel section of the SCMP.

�1.1.2.2.2	Set Up Software Control Boards

Overview

In this activity, the software configuration management (SCM) manager establishes the control boards for the project. These boards control changes to software products during the project’s software life cycle.

Roles and Responsibilities

The SCM manager is responsible for developing and documenting the control board structures.

The project software manager is responsible for providing input and assistance to the SCM manager as the optimum control board structures are determined.

Controls

See parent activity 1.1.2.2. Determine Project’s Software Configuration Management Activities.

Inputs

The completed Software Configuration Management Needs Form (see Appendix C).

The completed table documenting project roles and their SCM responsibilities.

Procedures

1) Using the information from the completed Software Configuration Management Needs Form and the list or table of roles and responsibilities, the SCM manager determines the most effective and efficient board structure for the project. The SCM manager then defines the board membership and responsibilities. The following paragraphs describe three types of control boards.

A) The Configuration Control Board (CCB) is established at the project level and, thus, is not within the scope of this Guidebook. This board controls system-level products, evaluating and dispositioning all Configuration Change Requests (CCR) (see Appendix C). The CCB works with the authors of proposed changes to resolve outstanding issues. Membership on the CCB may include the project manager or the project system engineer (often serving as chairperson), the project’s software quality assurance (SQA) representative, and representatives from all disciplines (e.g., hardware, software, optics), including the project software manager.

B) The Software Trouble Report Board (STRB) reviews Software Trouble Reports (see Appendix C), verifying that the reported problems are actually software errors and providing the Software Control Board (SCB) with recommendations on when and if corrections should be made. An STRB is needed only on very large projects (see activity 1.1.2.1.1 Perform Software Configuration Management Needs Analysis in this volume and activity 2.2.3.1 Analyze Software Trouble Reports). The STRB is normally chaired by the project software manager or the software engineering manager. Membership also includes (but is not limited to) the authors of any Software Trouble Reports being considered, developers responsible for analyzing the Software Trouble Reports, the SQA representative, and the SCM manager.

C) The SCB reviews and approves or disapproves Software Change Requests (SCR) and Requests for Deviations/Waivers (see Appendix C for both forms) (see activity 2.2.6 Hold Software Control Board Meeting). If a proposed change impacts a system-level product, the SCB forwards it to the CCB with recommendations and impact assessments. Membership on this board may include the authors of SCRs or Requests for Deviations/Waivers being reviewed, the individuals responsible for analyzing the proposed changes, the SCB chairperson (typically the project software manager), the SQA representative, and the SCM manager.

2) The SCM manager, with input from the project software manager, determines the frequency of board meetings based on project needs. Boards should meet regularly; this may be as frequently as weekly, or as infrequently as bi-monthly. The project software manager may call a board meeting at any time.

3) The SCM manager, together with the project software manager, tailors the definitions of the boards to meet project needs and defines their membership. The SCM manager documents the board definitions and the lists of board members in the Configuration Control section of the project’s SCM Plan (SCMP).

Outputs

The project’s control boards and their memberships, which are documented in the Configuration Control section of the SCMP.

�1.1.2.2.3	Define Backup And Restore Procedures

Overview

This activity determines the mechanisms that will be used to ensure all software products under software configuration management (SCM) are backed up and restorable, and the procedure for product restoration.

Roles and Responsibilities

The SCM manager develops the backup and restore procedures for the project.

The system administrator supplies information pertaining to system backup capabilities.

Controls

The software engineering environment, documented in the Establishing a Software Development Environment section of the Software Development Plan (SDP) (see Appendix E).

Inputs

The software product list of products to be placed under SCM.

Any additional information on the system’s backup capabilities from the system administrator.

The completed Software Configuration Management Needs Form (see Appendix C).

The Preparing for Software Transition section of the SDP, which documents the software products to be released to the customer.

Procedures

1) The system administrator gives the SCM manager a high-level briefing on the software engineering environment (defined in the Establishing a Software Development Environment section of the SDP) and the platforms being used, including the environment’s backup and restore capabilities. The system administrator also describes the backup methods that have been used in the past (e.g., tape or floppy disk).

2) The SCM manager answers the following questions based on personal knowledge of the project and the software engineering environment.

How many versions of each software product must be supported at any given time? The Preparing for Software Transition section of the SDP can aid in identifying the various versions that will be released. Each released version should be restorable and, thus, must be backed up. If possible, backup copies should be kept at a location separate from the development site.

Are commercial off-the-shelf (COTS) products (e.g., Booch components) needed to perform a product restoration? If so, the SCM manager carefully notes the version of each of these items, and requires that a backup of each be kept at a separate location.

Can restoration be performed using only tape or floppy disk backups? Where can these be stored? Are special instructions needed to restore each product? What is the life span of the recording media?

How long shall the development team be able to perform a product restoration (e.g., x years beyond the delivery of a product or the life of the contract plus y years)?

How long shall daily or weekly backups be kept?

Is it possible to perform incremental backups instead of full backups?

3) The SCM manager uses the information obtained from the system administrator, the answers to the questions in step 2, and personal knowledge of the system’s capabilities to plan the backup and restoration of the software products. The SCM manager reviews the software product list to verify that each of the software products being placed under SCM can be restored. It should always be possible to restore any version of any software products released during the life of the project.

4) The system administrator aids the SCM manager in determining the backup schedule. The completed Software Configuration Management Needs Form suggests a backup frequency; however, this may be tailored for each software product. The SCM manager reviews the feasibility of the suggested backup frequency with the system administrator, and determines how often, when, and how backups should be done. Backups may be scheduled daily, weekly, or bi-weekly. Each backup may be full, delta, or incremental. Factors to consider in defining a backup schedule include: project schedules, media cost, machine and network availability, and system administrator availability. It is important to realize that there may be changes to software, test cases, test data, schedules, and components at any time in a development life cycle.

5) The SCM manager documents the backup and restore procedures in the Packaging, Storage, Handling, and Delivery section of the SCM Plan (SCMP) (see Appendix E).

Outputs

The backup and restore procedures which are documented in the Packaging, Storage, Handling, and Delivery section of the SCMP.

�1.1.2.2.4	Define Change Management Process

Overview

In this activity, the software configuration management (SCM) manager defines the software change management process required to ensure that only approved changes are implemented into any baselined software product.

Roles and Responsibilities

The SCM manager defines the software change management process based on the project’s defined SCM needs.

Controls

The Software Configuration Management Volume, which describes the organization’s standard change management process (see activity 2.2. Dispositioning Software Configuration Management Reports and Requests).

Inputs

The completed Software Configuration Management Needs Form (see Appendix C).

The description of the software control boards and forms to be used, as documented in the Configuration Control section of the SCM Plan (SCMP) (see Appendix E).

Procedures

1) The SCM manager carefully reviews the Software Configuration Management Volume to gain a detailed knowledge of the organization’s standard change management process.

2) The SCM manager carefully reviews the software control board descriptions and forms to be used as documented in the Configuration Control section of the project’s SCMP.

3) The SCM manager should tailor (if necessary) the standard change management process (see activity 2.2 Dispositioning Software Configuration Management Reports and Requests).

Example:

If it has been determined that a Software Trouble Report Board (STRB) is needed then the SCM manager should define the actions of that board and how it would interface with the other control boards.

Any major changes to the standard change management process, as defined in the Software Configuration Management Volume, must be approved by the software engineering process group (SEPG). This approval may be obtained by submitting a Request for Deviation/Waiver (see Appendix C) request (see activities 2.2.1 Request Deviation/Waiver and 4.2.4 Maintain Process Standards) to the SEPG.

4) The SCM manager documents the project’s software change management process in the Configuration Control section of the SCMP. If no changes were made to the standard software change management process, this may simply be a reference to activity 2.2. Dispositioning Software Configuration Management Reports and Requests. If changes were made, the new activities should be documented and placed in the Configuration Control section of the SCMP with the changes clearly identified and any approved deviations referenced.

Outputs

The software change management process as documented in the Configuration Control section of the SCMP.

�1.1.2.2.5	Determine Configuration Audits To Be Performed

Overview

The purpose of this activity is to plan the physical configuration and functional configuration audits.

Roles and Responsibilities

The project software manager determines when the Physical Configuration Audit (PCA) and Functional Configuration Audit (FCA) shall be held, who will participate, and what software products will be reviewed.

The software quality assurance (SQA) representative provides information on the purposes of the audits, the expected availability of SQA personnel, and the estimated time and labor hours required to perform the audits.

The software configuration management (SCM) manager documents the purpose of the configuration audits, schedule for the audits, the software products to be reviewed, and audit team members in the Audits and Reviews section of the SCM Plan (SCMP) (see Appendix E).

Controls

The Software Engineering Evaluation System (SEES) Technical Assessment Procedure and Workshop for Functional Configuration Audit (SED-SES-TAP-FCADT-001, March 1994), which describes in great detail the steps and forms to be used during the FCA. SEES video training tapes also are available in the asset library.

The SEES Technical Assessment Procedure and Workshop for Physical Configuration Audit (SED-SES-TAP-PCADT-001, March 1994), which describes in great detail the steps and forms to be used during the PCA.

Inputs

The Schedule, Personnel Resources, and Software Transition sections of the Software Development Plan (SDP) (see Appendix E), which are used to determine when the audits will take place, who will participate, and what will be reviewed.

Procedures

1) The project software manager and the SCM manager review the process description and schedule in the Software Transition section of the SDP. They also may wish to review the audit activities (see activities 2.3.2 Perform Functional Configuration Audit and 2.3.3 Perform Physical Configuration Audit) described in the Software Configuration Management Volume and the SEES Technical Assessment Procedure and Workshop documentation and videos for the PCA and FCA to gain an understanding of the audits’ purposes and the steps required.

2) The project software manager proposes a date(s) for the FCA and PCA audits. The audits may be conducted concurrently, or the FCA may be performed first. The computer software configuration item (CSCI) qualification testing must be completed before the audits can be held, and the audits must be completed prior to delivering the software products to the customer.

3) The SQA representative provides information on the predicted availability of SQA personnel at the time of the proposed audit. The project software manager reviews the Personnel Resources section of the SDP, and may assign developers or other personnel to aid in the audit activities.

4) The SCM manager documents the purposes of the configuration audits, schedule for the audits, software products to be reviewed, and the audit team members in the Audits and Reviews section of the SCMP.

Outputs

The purpose(s) of the configuration audits, schedule for the audits, software products to be reviewed, and audit team members as documented in the Audits and Reviews section of the SCMP.

�1.1.2.3		Select Software Configuration Management Tools

Overview

In this activity, the software configuration management (SCM) manager selects SCM tools for use on the project. SCM tools fall into two general categories: 1) tools to track product status, Software Trouble Reports, requests, and 2) version control tools (e.g., Polytron Version Control System, PVCS().

Roles and Responsibilities

The SCM manager is responsible for selecting SCM tools for the project.

The system administrator is responsible for installing the selected SCM tools.

The project software manager is responsible for approving and scheduling the purchase of any SCM tools.

Controls

The software engineering environment, as documented in the Establishing a Software Development Environment section of the Software Development Plan (SDP) (see Appendix E).

Inputs

The SCM forms that have been tailored for use on the project, as documented in the Configuration Control section of the partially completed SCM Plan (SCMP) (see Appendix E).

The completed Software Configuration Management Needs Form (see Appendix C), which indicates the level of SCM required on the project.

The completed software product list of software products to be kept under SCM control.

The set of SCM tools available within the organization which may be identified via the organization’s tool database.

Procedures

1) The SCM manager reviews the Establishing a Software Development Environment section of the SDP, SCM forms that will be used on the project, the software product list, and completed Software Configuration Management Needs Form(s) to gain an understanding of the software engineering environment and items that must be tracked. The SCM manager begins to identify the SCM tools needed by the project. Normally, a version control tool and a tracking system (e.g., a SCM database) are required for most projects.

2) The SCM manager identifies any SCM tools in use or available in the organization via the organization’s tool database.

3) The SCM manager reviews the available tools that support the platform(s) used on the project. The SCM manager selects the ones that best seem to fit the project’s needs, and ensures that the system administrator makes these tools available to project personnel. When selecting an SCM tool, the SCM manager takes the following into account:

User-friendliness.

Cost.

Integration with other tools being used in the project.

Report generation capability.

Security and access controls.

If suitable tools are not available in the organization, the SCM manager may contact commercial vendors, or it may be possible to develop a tool in-house.

An example of a simple in-house solution is using a spreadsheet to track the status (e.g., baselined, integrated, under development, planned) of each software product. This may be an extension of the software product list, in which columns are added to show the status, expected completion date, actual completion date, responsible developer or group, etc.

4) If necessary, the SCM manager works with the SCM tool vendors to conduct demonstrations and work out discrepancies between project needs and tool functionality. There are always trade-offs between needs and tool capability. Tool selection is critical. To identify the tool offering the best fit, the SCM manager takes a close look at ease of tool use, protection of items, cost, future growth of the software project, and tool vendor support.

5) If a tool is being purchased from a vendor, the SCM manager obtains approval from the project software manager, orders the tool, and then has the system administrator install it.

6) The SCM manager documents the selected SCM tools in the Tools section of the SCMP.

Outputs

The project’s SCM tools which have been selected and installed.

The Tools section of the SCMP which documents the SCM tools selected.

�1.1.2.4		Develop Naming And Numbering Standards And Directory Structure

Overview

In this activity, the software configuration management (SCM) manager determines the project’s naming and numbering standards. The SCM manager also determines the directory structures (and the associated read and write privileges) to be used during the project to protect completed software products, and to aid in the development of new software products.

Roles and Responsibilities

The SCM manager determines the naming and numbering scheme to be used, directory structure, and the associated read and write privileges.

The system administrator performs the actual setup of the directory structure.

The software engineering manager reviews the directory structure and the naming and numbering scheme to ensure adequacy for the project’s development needs.

Controls

The software engineering environment of the project (e.g., development platform and compilers) documented in the Establishing a Software Development Environment section of the Software Development Plan (SDP) (see Appendix E).

The SCM tools which have been selected for the project and documented in the Tools section of the SCM Plan (SCMP) (see Appendix E).

Inputs

The completed software product list in the SCM section of the SDP, which documents the products that must be placed under SCM.

Procedures

Note: The following is a general discussion only. The characteristics of the naming and numbering scheme and the directory structure will be greatly impacted by the SCM tools selected and by the software engineering environment.

1) The SCM manager reviews the software product list to gain an understanding of the software products that must be controlled.

2) The SCM manager develops a naming and numbering scheme that indicates the project, product name, and version or revision of each product on the software product list.

3) The SCM manager assigns a unique name and number to each software product. Example 1 describes the naming and numbering of a software product, explaining the information that is conveyed by the name and number.

Example 1:

The Software Requirements Specification (SRS) for the XYZ project may be assigned the name XYZ_SRS_A0, where XYZ indicates the project, SRS indicates that this is the Software Requirements Specification, A indicates that this is the first version of this document, and 0 indicates that there have been no revisions. If the SRS is modified later by an approved Software Change Request (SCR) (see Appendix C), the new file will have the name, XYZ_SRS_A1, indicating that this is the first revision of the document. If developers create a new version of this document during another cycle, it may be named XYZ_SRS_B0, to indicate that it is a new version containing a new set of requirements.

Code units may be handled similarly. However, some SCM tools (e.g., Polytron Version Control System((PVCS()) keep track of versions and revisions internally, making it unnecessary to specify the version or revision number in the file name. The SCM manager simply assigns a name to each code unit (e.g., temp_sensor.ada).

Note: Individual code units cannot be identified prior to detailed design. Thus, the SCM manager must update the naming and numbering scheme when the code units are defined.

4) The software engineering manager reviews the sample directory structure described in Example 2 and, using the software product list, tailors the structure to meet the project’s needs.

Example 2: Sample Directory Structure

The directory structure for the XYZ project is based on the Microsoft Disk Operating System (MS-DOS) directory structure. Ada is the assumed programming language.

The system administrator creates a separate volume on the disk of the file server, called “XYZ,” to store all XYZ project-related source and object code. A volume is much like a partition on a hard drive in MS-DOS, except it is created using the Novell(network software. The XYZ volume stores the Ada source and object files needed to build the entire software system. In addition, it stores all commercial off-the-shelf (COTS) tools, including MS Word for Windows(, PVCS(, Alsys(compiler, and associated tools. It is important to note that the Alsys(compiler must be in this same volume. The following descriptions and directory-hierarchy diagrams illustrate this sample directory structure. The directories shown represent the minimum created on any project.

In the XYZ project, the system administrator creates a directory structure for each computer software configuration item (CSCI). Examples include directories called “XYZ: FLIGHT (CSCI L)” and “XYZ: GROUND (CSCI M).” The system administrator creates numerous subdirectories within each of these to isolate the development processes for different software development items. The directory structure indicates where documents, compilation units, and source code are kept, along with what is under development, what is under integration, and what is baselined.

project: VOLUME. The system administrator creates a separate volume for each project (a partition on a hard drive). The volume, at a minimum, has a SHARED directory and a directory for each CSCI within the project.

project: SHARED. The SHARED directory has a REUSE subdirectory for components that can be used on any CSCI and a DOCUMENT subdirectory for documents related to the project as a whole.

project:CSCI. The CSCI directory is labeled with the CSCI’s name. The CSCI directory has a CONFIG subdirectory and a DEVELOP subdirectory. The contents of the CONFIG subdirectory are under the control of SCM, whereas, the contents of the DEVELOP subdirectory are under the control of the individual developers.

project:CSCI\DEVELOP. The DEVELOP subdirectory is used for actual software development. This subdirectory has one user subdirectory for each team member.

project:CSCI\DEVELOP\user. The user subdirectory is renamed with the team member's name. This subdirectory has the following subdirectories:

LIBRARY (contains the compiled and executable code);

SOURCE (contains all source code for the Ada units);

DOCUMENT (contains all documents that the developer writes); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories).

These subdirectories together make up the user’s Software Development File (SDF).

Overall Directory Structure

��

�����

������

�����

�������

��������

�������������

��������

�������

project: CSCI\CONFIG. The CONFIG subdirectory is under SCM and contains the software products for the CSCI that are baselined, under development (but needed by other users), or awaiting management approval.

project: CSCI\CONFIG\INTEGRATION. The products in the INTEGRATION subdirectory are under SCM but have not been baselined. Software products in this subdirectory are often still under development but are complete enough to be useful to other developers, or else are awaiting management approval. The INTEGRATION directory has the following subdirectories:

LIBRARY (contains the compiled and executable code);

SOURCE (contains all source code for the Ada units);

DOCUMENT (contains CONCEPT, REQUIRE, DESIGN, MANUALS, and USERGUIDE subdirectories); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories).

CSCI\CONFIG\INTEGRATION DIRECTORY (1.1)

���

project: CSCI\CONFIG\BASELINE. The products under the BASELINE subdirectory have been baselined and are subject to the formal change-control process. The BASELINE subdirectory has the following subdirectories:

LIBRARY (contains the compiled and executable code);

SOURCE (contains all source code for the Ada units);

DOCUMENT (contains CONCEPT, REQUIRE, DESIGN, MANUALS, and USERGUIDE subdirectories); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories).

Note: Each subdirectory may contain a subdirectory for each version of the software product.

�CSCI\CONFIG\BASELINE DIRECTORY (1.2)

��

SHARED\REUSE. The REUSE subdirectory contains reusable software products that are to be used in more than one CSCI.

project: SHARED\REUSE\INTEGRATION. The REUSE\INTEGRATION subdirectory contains items that are still under development but are complete enough to be useful to other developers, or else are awaiting management approval. The REUSE\INTEGRATION directory has the following subdirectories:

LIBRARY (contains the compiled and executable code);

SOURCE (contains all source code for the code units);

DOCUMENT (contains a subdirectory for each reusable document); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories).

Note: Each subdirectory may contain a subdirectory for each version of the software product.

�SHARED\REUSE\INTEGRATION DIRECTORY (1.3)

�

project: SHARED\REUSE\BASELINE. The REUSE\BASELINE subdirectory contains software and documentation that has been baselined and is subject to the formal change-control process. The REUSE\BASELINE subdirectory has the following subdirectories:

LIBRARY (contains the compiled and executable code);

SOURCE (contains all source code for the code units);

DOCUMENT (contains a subdirectory for each reusable document); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories).

Note: Each subdirectory may contain a subdirectory for each version of the software product.

SHARED\REUSE\BASELINE DIRECTORY (1.4)

�

project:SHARED\DOCUMENT. The DOCUMENT subdirectory contains those documents that apply to all CSCIs or to the project as a whole. Examples of these are the Software Quality Assurance (SQA) plan and integration plans.

project: SHARED\DOCUMENT\INTEGRATION. The DOCUMENT\INTEGRATION subdirectory contains documents that are under configuration control but have not been baselined. This usually includes products that are waiting for management approval or that are partially complete and needed by other project-group members. The INTEGRATION subdirectory has the following subdirectories:

PLANS (contains management plans and reports that apply to the project as a whole, such as the SQA plan);

GUIDES (contains all guides or manuals that may apply to more than one CSCI;

INTERFACES (contains Interface Requirements Specifications and any other documents that pertain to interfaces between CSCIs); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories; these contain tests used during the integration of CSCIs or qualification tests for the software system as a whole).

Note: Each subdirectory may contain a subdirectory for each version of the software product.

SHARED\DOCUMENT\INTEGRATION DIRECTORY (1.5)

�������������������������������

��

project: SHARED\DOCUMENT\BASELINE. The DOCUMENT\BASELINE subdirectory contains documents that have been baselined and are subject to the formal change-control process. The DOCUMENT\BASELINE subdirectory has the following subdirectories:

PLANS (contains management plans and reports that apply to the project as a whole, such as the SQA plan);

GUIDES (contains all guides or manuals which may apply to more than one CSCI;

INTERFACES (contains Interface Requirement Specifications and any other documents that pertain to interfaces between CSCIs); and

TEST (contains PLANS, PROCEDURES, DRIVERS, RESULTS, and REPORTS subdirectories; these contain tests used during the integration of CSCIs or qualification tests for the software system as a whole).

Note: Each subdirectory may contain a subdirectory for each version of the software.

�5) At least one software engineering manager reviews the directory structure and the naming and numbering scheme to ensure adequacy in meeting the project’s development needs.

6) The SCM manager documents the completed directory structure, placing it in the Configuration Identification section of the SCMP.

7) For each directory, the SCM manager determines who should have read, write, and other applicable privileges. Normally, the project software manager, SCM manager, and system administrator have full read and write privileges to all files in all directories. The software developers normally have only full read and write privileges to their own CSCI\DEVELOP\user directories; however, the developers may have read access to all the directories. The SCM manager documents these access privileges in the Configuration Identification section of the SCMP.

8) The system administrator, under the supervision of the SCM manager, sets up the directory structure and access restrictions, as documented in the SCMP.

Outputs

The project’s naming and numbering standards, directory structure, and directory-access restrictions, as documented in the Configuration Identification section of the SCMP.

The project’s directory structure, with proper access restrictions in place.

�1.1.2.5		Develop Software Configuration Management Plan

Overview

In this activity, the software configuration management (SCM) manager completes the SCM Plan (SCMP), most of which the SCM manager has developed in the preceding subactivities. Once the plan is complete, it is reviewed and approved by the project software manager.

Roles and Responsibilities

The SCM manager is responsible for completing and submitting the SCMP to the project software manager.

The project software manager is responsible for providing information on project schedules and requirements to the SCM manager. The project software manager is also responsible for reviewing and approving the SCMP.

Controls

See parent activity 1.1.2 Plan Software Configuration Management.

Inputs

The SCMP which has been partially completed in prior SCM planning activities.

The Scope, Referenced Documents, and Overview of Required Work sections of the Software Development Plan (SDP) (see Appendix E), which may be referenced by the SCMP.

Procedures

1) The SCM manager reviews the project’s partially completed SCMP and compares it to the SCMP DID in Appendix E.

2) Using information provided by the project software manager, the SCM manager fills in any additional, required sections of the SCMP DID. If there are any sections that repeat information contained in other, already completed plans (e.g., the System Overview of the SDP), the SCM manager may reference or copy the pertinent sections of the other plans.

3) The SCM manager submits the completed SCMP to the project software manager for review and approval.

4) Upon approval of the plan, the SCM manager completes a Promotion Notification Form (PNF) (see Appendix C) and places the SCMP under SCM (see activity 2.1.1 Place a New Document Under Software Configuration Management).

Outputs

The completed SCMP.

�1.1.2.6		Provide Software Configuration Management Training

Overview

In this activity, the software configuration management (SCM) manager determines the SCM training needed by the project group. After SCM processes are established and SCM tools are selected, and the SCM is approved by the project software manager, all software developers and testers, as well as the managers and control-board members, receive training in SCM processes and tools, and familiarize themselves with the SCM Plan (SCMP) (see Appendix E).

Roles and Responsibilities

The SCM manager is responsible for determining the project’s SCM training needs. This individual also is responsible for developing the training materials and providing the training, although the SCM manager may delegate these responsibilities to experienced staff members or contract them out to vendors.

The project software manager is responsible for budgeting and scheduling the SCM training and for incorporating the training into the overall Project Training Plan (see Organization Training Plan (OTP) Data Item Description (DID) in Appendix E).

Controls

The Schedules and Activity Network section of the Software Development Plan (SDP) (see Appendix E), which may impose time and budget constraints.

Inputs

The approved SCMP.

Procedures

1) Using the approved SCMP, the SCM manager determines which activities and tools each individual will use during the project and, therefore, the training each individual must have.

2) The SCM manager assigns individuals to provide the training. If a new, commercial SCM tool is being used, it is strongly recommended that training be obtained from the vendor, if possible. If the project’s SCM tools were used on previous projects, training can be provided by experienced developers or system administrators. Training in activities, such as control board meetings, is provided by experienced in-house personnel or by the SCM manager. The SCM manager selects the training dates and estimates the time required for training based upon the software project schedule in the Schedules and Activity Network section of the SDP.

3) The SCM manager writes the SCM Training Plan based on the SCM tools and on the personnel assigned to the project. The SCM manager submits the training plan to the project software manager. An SCM Training Plan is shown in the example.

Example SCM Training Plan:

The SCM manager shall provide a workshop on the change control process to be implemented on this project. All project group members shall attend. The workshop is scheduled for June 1, 1996, and will last approximately 1 hour.

A senior software developer shall provide training in the use of SCM tools and the directory structure, as defined in the Software Configuration Management Plan, to all developers. This training is scheduled for June 1, 1996, and will last approximately 4 hours.

The SCM manager shall conduct a workshop for all members of the Software Control Board to review the SCB procedures. This workshop is scheduled for May 3, 1996, and will last approximately 2 hours.

The SCM manager shall review the backup and restore procedures, the required directory structures, and any security issues with the project group and all system administrators. The date of this session and the time required are TBD.

All project group members shall receive a copy of the Software Configuration Management Plan.

4) The project software manager reviews the SCM training plan and approves or returns it for modification.

5) If the project software manager approves the SCM Training Plan, the project software manager includes it in the Software Project Training Plan (see activity 1.1.4 Plan And Provide Software Project Training).

6) The individuals assigned to provide training prepare the training materials.

7) The training is conducted, as planned. The SCM manager documents all training conducted, the dates of all training sessions, and the individuals receiving training in the Software Project Training Plan. Note: This is an ongoing activity. Training may be provided throughout the life cycle of the project as new personnel join the staff.

Outputs

The SCM Training Plan, which has been included in the Software Project Training Plan.

The SCM training which has been conducted.

�1.1.3	Plan Software Testing

Overview

In this activity, the software test manager develops the project’s tailored Software Test Plan (STP) (see Appendix E) for use in independently testing software. The software test manager identifies the details of the software test environment, defines the test organization, maps the software requirements to the test organization to ensure test plan completeness, and determines the test schedule.

Roles and Responsibilities

The software test manager completes the STP that defines the software testing process.

The project software manager approves the completed STP.

Controls

The STP Data Item Description (DID) describing the STP format (see Appendix E).

Inputs

The completed Software Development Plan (SDP) (see Appendix E) which documents the plan for the software development effort.

Software requirements which may take the form of a Software Requirements Specification (SRS) (see Appendix E).

Procedures

The following subactivities are iteratively performed by the software test manager, and results are documented in the tailored STP:

1) 1.1.3.1 Identify Software Test Environment - This activity describes the planned test environment using information from the SDP. The activity identifies one or more test sites to be used for the testing. It also lists all software, hardware, and other materials necessary to perform the testing, as well as plans for acquiring and installing these items for each test site. It also describes personnel requirements for each site.

2) 1.1.3.2 Define Testing Approach - This activity describes general plans for testing, based on information from the SDP, including test levels, general test conditions, test progression, data recording and analysis, and the total scope of the planned testing.

3) 1.1.3.3 Determine Test Schedules - This activity defines the planned testing schedule for each test site, based on information from the SDP. The schedule is coordinated with the software development schedule from the SDP and overall project schedule.

4) After completing the above subactivities, the major STP sections have been completed. The software test manager completes any remaining required STP sections, such as Scope and Referenced Documents, and submits the STP to the project software manager for review and approval.

5) Upon project software manager approval, the software test manager submits the STP to be placed under software configuration management (SCM) (see activity 2.1.1 Place A New Document Under Software Configuration Management).

Outputs

The STP defining the plans for independent software testing, approved by the project software manager, and placed under SCM.

�1.1.3.1		Identify Software Test Environment

Overview

In this activity, the planned software test environment is identified. The software test manager identifies one or more test sites to be used for the testing. For each test site, the software test manager lists all software, hardware, and other materials necessary to perform the testing, as well as plans for acquiring and installing these items. Personnel requirements for each site are described.

Roles and Responsibilities

The software test manager completes the Software Test Plan (STP) (see Appendix E) sections defining the software test environment.

Controls

See parent activity 1.1.3 Plan Software Testing.

Inputs

See parent activity 1.1.3 Plan Software Testing.

Procedures

Accurate descriptions of test environment(s) are essential when testing embedded, flight, and mission critical software. Documenting accurate descriptions helps ensure repeatability and integrity of testing. The software test manager iteratively performs the following steps:

1) Reads the Software Development Plan (SDP) (see Appendix E) to gain an understanding of how the software development effort is expected to proceed.

2) Identifies the test site(s). The subsections of the Software Test Environment section will be appropriately arranged following the instructions in the STP Data Item Description (DID). When identifying test sites, the software test manager keeps in mind the type of test (e.g., thermal vac or vibration testing for flight hardware) and type of software under test (e.g., mission operations software, flight software).

The software test manager performs the following steps for each test site:

A) Identifies software, hardware (e.g., target computer hardware, oscilloscopes, multi-meters, external tape drives, printers, firmware), and any other materials (e.g., manuals, media containing data to be used in the tests) required for testing. All items are precisely specified, as appropriate, with item name, version number, manufacturer’s name, etc. Security, privacy, and licensing issues are considered as well. The software test manager documents all of those decisions in the Software Items, Hardware and Firmware Items, Other Items, Proprietary Nature, Acquirer’s Rights and Licensing sections of the STP. The installation, testing, and control of each item previously identified in this step are documented in the Installation, Testing, and Control section of the STP.

B) Identifies all organizations expected to participate in the testing, such as quality assurance (QA), safety, etc., including contractor and NASA organizations. For each identified organization, all personnel necessary to perform the testing are identified (e.g., data entry person from testing organization, skilled machine operator from the customer’s organization). Details about the organizations and associated personnel are documented in the Participating Organizations and Personnel section of the STP. Any necessary training is described in the Orientation Plan section of the STP.

3) Identifies each test to be performed at each specified test site by referencing the Test Identification section(s) of the STP. This is documented in the Tests to be Performed section of the STP.

Outputs

The Software Test Environment section of the STP.

�1.1.3.2		Define Testing Approach

Overview

This activity describes general plans for the testing, including test levels, general test conditions, test progression, data recording and analysis, and the total scope of the planned testing.

Roles and Responsibilities

The software test manager completes the Software Test Plan (STP) (see Appendix E) sections defining the software test approach.

Controls

See parent activity 1.1.3 Plan Software Testing.

Inputs

The software requirements as documented in the Software Requirements Specification (SRS).

The software test environment as determined in activity 1.1.3.1 Identify Software Test Environment.

Procedures

The most difficult testing issue is deciding how much testing to do (i.e., how much is enough). Although the answer to this question should not depend on cost or budget constraints, it usually does. This activity defines the approach to testing, and the main testing parameters or boundaries. The software test manager iteratively performs the following steps:

1) Reads the Software Development Plan (SDP) (see Appendix E) to gain an understanding of how the software development effort is expected to proceed.

2) Identifies the test levels (e.g., computer software configuration item (CSCI) level, system level) and the classes of tests that will be performed (e.g., timing tests for real-time flight software, erroneous input tests for command queues in flight software, erroneous user input tests for ground support software, maximum capacity tests for flight data recording software). This information is documented in the Test Levels and Test Classes section of the STP.

3) Defines the general test conditions. These conditions apply to all tests or a group of tests. This is best explained with examples.

Example:

Each test for the command queues for the flight software shall include command parameter values with nominal, maximum, and minimum values.

Each test for the ground support, real-time displays shall use live data.

Execution timing shall be done for each CSCI in the flight software.

The STP Data Item Description (DID) requires a statement describing the extent of testing to be performed and the rationale for the extent selected. This also is best explained with an example:�

Example:

The testing of the command queues for the flight software shall include 100% of the available commands. Of those commands, each command which has an associated parameter shall be tested with nominal, maximum, and minimum values for the parameter. Because any command can be sent from ground at any time during the flight, the software must be able to appropriately handle it.

In addition, the general approach for regression testing is identified. All of the information described in this step is documented in the General Test Conditions section of the STP.

In progressive or cumulative tests, which are common for flight systems, this sequence or progression is documented in the Test Progression section of the STP.

4) Considers data recording, reduction, and analysis procedures for the testing. This includes: automated data recording, post-processing software, and software analysis packages which may manipulate the data into a form appropriate for evaluation. Decisions regarding data recording and processing are documented in the Data Recording, Reduction, and Analysis section of the STP.

5) Makes an entry in the Planned Tests section of the STP for each item (i.e., CSCI, subsystem, system) to be tested. A complete specification of the item, including name and a project-unique identifier, is defined. The format specified by the STP DID is followed to include information about the test, such as test objective, qualification methods, special requirements (e.g., the flight software must be run for 90 minutes to test a complete orbit), type of data, etc.

Outputs

The Test Identification section of the STP.

 �1.1.3.3		Determine Test Schedule

Overview

This activity defines the planned testing schedule for each test site. The schedule is coordinated with the software development schedule and overall project schedule.

Roles and Responsibilities

The software test manager completes the Software Test Plan (STP) (see Appendix E) section on determining the test schedule.

The software engineering process group (SEPG) members may be consulted to provide information on historical testing durations.

Controls

See parent activity 1.1.3 Plan Software Testing.

Inputs

The test approach as defined in activity 1.1.3.2 Define Testing Approach.

The software test environment identified in activity 1.1.3.1 Identify Software Test Environment.

Procedures

The testing schedule has the same essential elements as any other schedule, that is, milestones with dates, when all resources (e.g., people, machines, tools, facilities) are needed, and when testing activities are planned to be performed. However, testing schedules are very difficult to estimate because they depend on others’ work (e.g., if the circuit boards for the flight box have not yet been manufactured then the flight software cannot be tested). Schedules are still very useful and essential tools in testing because they provide an element of predictability, maximize productivity, and are imperative for progress tracking. Cem Kaner, et al, give additional guidance on preparing testing schedules in [Kaner, 1993, pp. 352 - 358]. The software test manager iteratively follows the following steps to prepare a test schedule:

1) Reads the Software Development Plan (SDP) (see Appendix E), concentrating on the Schedules and Activity Network section, to understand how the software development effort is expected to proceed. The software test manager focuses on software and project milestones. Additional important information is provided by previously completed STP sections.

2) Creates a top-level schedule based on the software project delivery schedule. This schedule should show all start and finish dates for testing each software delivery package, as well as all major software and project milestones. In addition, resource-needed dates for every element in the test environment are included. The software test manager reviews this top-level schedule with the project software manager. If it is determined that the testing schedule is unsatisfactory for some reason, the managers work together to determine alternatives.

3) Adds more detail to or “fleshes out” the schedule and each of the testing activities. SEPG members may be consulted, as well as some cost models to determine the amount of time to perform lower-level activities. The dates and durations for the upper-level activities may need to be updated based on these estimates. Activities which can be done in parallel should be identified, thus, reducing the amount of time needed to test. The critical path for the testing effort is then generated.

4) The software testing schedule should be placed in the Test Schedules section of the STP.

Outputs

The Software Test Schedule which has been documented in the Test Schedules section of the STP.

�1.1.4	Plan And Provide Software Project Training

Overview

In this activity, the software project’s training needs are identified, the training approach is determined, the training materials are selected, and the training is conducted. This training is in addition to, and in no way should substitute for, the organization’s standard training program.

Roles and Responsibilities

The project software manager is responsible for developing the Software Project’s Training Plan.

Controls

The Software Development Plan (SDP) (see Appendix E) which documents the software engineering environment, schedule, and software project personnel.

The Software Test Plan (STP) (see Appendix E) which documents the test schedule and test environment.

The Organizational Training Plan (OTP) Data Item Description (DID) (see Appendix E) which provides the format for the Software Project Training Plan.

Inputs

Software Configuration Management (SCM) Training Plan which documents the software configuration management (SCM) training needed.

Training background of software project personnel as documented in the software metrics database.

Procedures

Adequate training is essential to the success of any project and, thus, adequate funding and resources must be provided for it.

1) The project software manager first reviews the training background of the individuals assigned to the project roles identified in the SDP. This information is obtained from the organization’s software metrics database. The project software manager determines if the individuals have had adequate organizational training on topics such as formal inspections, object-oriented design, etc. If the software engineering group members lack organizational-level training, the software engineering process group (SEPG) members should be contacted to determine when the appropriate training courses can be taught.

2) The project software manager determines any project-specific training needed by the software engineering group members. The configuration management (CM) training should be documented in the SCM Training Plan. The SDP and STP must be reviewed to determine any training needed. This may include training on tools specific to the software engineering or testing environment (e.g., test data generators, compilers), mathematical methods (e.g, Markov processes, Runge-Kutta integration), or domain-specific training (e.g., wind-tunnel control systems, spacecraft attitude determination and control).

3) Once the types of training needed are identified, the project software manager determines how the training will be provided. It has been found that in comparing conventional training methods, in-house (i.e., training developed and conducted by the organization) and commercial training programs (i.e., training conducted by commercial training companies) are the most effective methods [Jones, 1995]. An alternative approach is to have a part-time consultant(s) provide training in-house and support projects over several months. Developing in-house training should not be considered for project-specific training needs when commercial training is available, unless it is likely that the training will be needed on multiple projects throughout the organization.

4) Identify the cost and time required for the training. Initial training can be somewhat lengthy. Studies [Quann, 1995, pp. 25-30] have shown approximate classroom needs as follows in Table 1.1.4 -1.

Table 1.1.4-1 Training Time Estimates

Subject�Weeks��Software development tools�1 (per tool)��Basic Ada programming skills�1 - 2��Advanced Ada concepts�1 - 3��Financial support must be provided to the project. Upper management must be made aware of the cost and training needs, and be willing to invest in training their personnel. The training cost is added into the project cost estimates (1.1.1.1.4 Perform Cost Estimating) and the project schedule (1.1.1.1.5 Develop Software Schedule) is updated.

5) Once the training needs, training development efforts, and courses are identified and funding is secured, they are documented in the Software Project Training Plan using the OTP DID. The training plan is placed under SCM.

6) Training is obtained and conducted in accordance with the Software Project Training Plan.

7) For each training class, the individuals completing the training should be tracked using the Course Record Form (see Appendix C), which is entered into the metrics database.

Outputs

The Software Project Training Plan which documents the project-specific training required for the software engineering group members.

The Course Record Form entered into the metrics database.

�1.2		Track Software Project

Overview

In this activity, the software project plans (i.e., Software Configuration Management Plan (SCMP) Software Development Plan (SDP), Software Test Plan (STP), Software Project Training Plan (see Appendix E) are implemented, the software project’s progress is monitored, risks are identified and tracked, and the software project plans are updated.

Roles and Responsibilities

The project software manager is responsible for tracking the software project’s progress, verifying that the software project plans are kept current, and supporting the project-level reviews.

Controls

The Project Plan which documents what system-level reviews will be held and their schedules.

Inputs

Software metric reports documenting the project’s status.

Software project plans (e.g., SDP, SCMP, against which progress is measured, and which are updated as the software project progresses).

Procedures

Activity 1.2.1 begins at software project start-up. Activity 1.2.2 is performed based upon the system-level review schedule as documented in the Project Plan.

1) 1.2.1 Monitor Software Project Performance - This activity covers overseeing and tracking the software project’s progress. This effort includes formal and informal progress reviews, measuring planned versus actual software project status, mitigating and tracking risks, reviewing software project metric reports, and updating the software project plans.

2) 1.2.2. Participate In Major Project Reviews - Throughout the course of the project, the project software manager will be asked to participate in project-level reviews. These reviews will vary between projects. In this activity, the general project review process is outlined. For information on the various reviews see Attachment II of this volume.

Outputs

The updated software project plans which are maintained under configuration control.

�1.2.1	Monitor Software Project Performance

Overview

This activity covers overseeing and tracking the project’s progress. This effort includes formal and informal progress reviews, measuring planned versus actual status, risk mitigation and tracking, and evaluating software project metrics.

Roles and Responsibilities

The project software manager is responsible for monitoring the software project’s performance, and updating the software project plans accordingly.

Controls

The Project Plan which contains the project’s schedule and imposes constraints (e.g., budgetary, schedule, organizational) upon the software project.

Inputs

Software project plans (i.e., Software Development Plan (SDP), Software Test Plan (STP), Software Configuration Management Plan (SCMP), Software Project Training Plan) (see Appendix E for Data Item Descriptions (DID)) to be updated.

Software metric reports which indicate the status of the software project to date.

Procedures

The following activities are performed throughout the project’s life. No order is implied for 1.2.1.1 Perform Risk Management, 1.2.1.2 Conduct Progress Reviews, and 1.2.1.3 Analyze Software Project Metrics. Activity 1.2.1.4 Maintain Software Project Plans is done based upon the results of the activities 1.2.1.1, 1.2.1.2, and 1.2.1.3.

1) 1.2.1.1 Perform Risk Management. In this activity, identified risks are documented, analyzed, mitigated, tracked, and closed. For a detailed discussion of risk management see [SEI, 1996].

2) 1.2.1.2 Conduct Progress Reviews. In this activity, software project reviews are held. These reviews may be formal or informal depending on the project’s size. Formal reviews are necessary for large projects or projects having one or more contractors. These progress reviews provide the project software manager with insight into the software project’s current state.

3) 1.2.1.3 Analyze Software Project Metrics. In this activity, cost data and software metric reports are reviewed and analyzed. Actual performance results are evaluated against planned progress as documented in the project software schedule in the SDP.

4) 1.2.1.4 Maintain Software Project Plans. In this activity, the software project plans are updated based upon actual software project results, changes to the Project Plan, and risk mitigation activities. The plans are modified in accordance with the project’s SCMP.

Outputs

Updated software project plans which are placed under configuration control.

�1.2.1.1		Perform Risk Management

Overview

In this activity, identified risks are documented, analyzed, mitigated, tracked, and closed. For a detailed discussion of risk management see [SEI, 1996].

Roles and Responsibilities

All software project personnel are responsible for identifying risks.

The project software manager is responsible for assigning personnel to analyze the identified risks, prioritizing the risks, determining a risk mitigation strategy, and tracking the risks.

Controls

The software project’s risk management approach as documented in the Risk Management section of the Software Development Plan (SDP) (see Appendix E).

The Risk Information Form (see Appendix C) used to document and analyze risks.

The Project Plan which documents how project-level risks are to be reported and handled.

Inputs

Risks identified by software project personnel.

Procedures

1) Risks are identified by software project personnel throughout the software project’s life cycle. Risks are reported by completing the Risk Statement and Context Sections of the Risk Information Form, and entered into the risk tracking system (see activity 1.1.1.4 Plan Risk Management).

2) The project software manager assigns an individual to analyze the identified risks.

3) The individual analyzing the identified risks determines the potential impact, products which could be impacted, probability, and time frame associated with the risk. This analysis should be periodically repeated based upon software project changes. This information is documented in the appropriate sections of the Risk Information Form. A risk that impacts the entire project or other domains (e.g., hardware, optics) should be identified to the project manager in accordance with the risk management approach defined in the Project Plan.

4) As risks are identified and analyzed, the project software manager prioritizes them to identify those that are the most critical and must be handled. This prioritization is documented in the Priority section of the Risk Information Form.

5) For an identified critical risk, the project software manager (or a designee) determines an approach to mitigating the risk, and contingency plans for handling the problem if it occurs. The software project plans (e.g. SDP, Software Test Plan (STP)) are updated accordingly (see activity 1.2.1.4 Maintain Software Project Plans). As part of the risk mitigation strategy, the software metrics required to track the identified risks (and determine if the problem has materialized) are identified. This information is documented in the Mitigation Strategy and Contingency Plan and Trigger sections of the Risk Information Form. If the identified metrics include software metrics not being tracked and/or reported by the software engineering process group (SEPG), a Software Change Request (SCR) (see Appendix C) (see activity 2.2.4 Request Software Product Change) may be written and submitted to the SEPG (see activity 4.2.4 Maintain Process Standard) requesting that the software metric database be modified to track and/or report the required data.

6) As the software project continues, the risk tracking data is monitored. If a risk ceases to exist, it is closed and the Closing Date and Closing Rationale are documented on the Risk Information Form. If the risk increases or becomes realized, the project management plans must be updated (see activity 1.2.1.4 Maintain Software Project Plans). As long as a risk is open, it should be discussed at the software project team meetings, and if necessary, reanalyzed and prioritized (see steps 2 and 3). The changes in the status of the risk are documented in the Status section of the Risk Information Form.

Outputs

Documented risks identified on the Risk Information Form(s)

�1.2.1.2		Conduct Progress Reviews

Overview

In this activity, software project reviews are held. These reviews may be formal or informal, depending on the project size. Formal reviews are necessary for large projects or projects having one or more contractors. These progress reviews provide the project software manager with insight into the current state of the project.

Roles and Responsibilities

The project software manager is responsible for scheduling and leading the software project reviews.

The software project personnel are responsible for participating in the reviews.

The project manager, customers, users, and managers from other disciplines may be invited to attend and participate in the reviews.

Controls

Software project plans that document the software project status and approach.

The Software Configuration Management Plan (SCMP) (see Appendix E) which documents how changes in baselined software products will be handled.

The Project Plan (see Appendix E) which documents how project-level risks are identified and handled.

The project-level Configuration Management (CM) Plan (CMP) which documents how changes in project-level products are handled.

Inputs

Software work products for review.

Documented risks for discussion.

Software metric reports which help define the status of the software project.

Procedures

Software progress reviews may be periodically held, may be based around software project milestones, or may be held at the request of the project or software project personnel. The reviews facilitate communication between software project members, the project manager, customer(s), users, and managers from other disciplines, to identify risks and changes needed in software project plans; reaffirm or modify commitments; and evaluate progress status with supporting documentation (i.e., software metrics, software work products). For small projects in which the project software manager works closely with all other software project members, weekly group meetings may be sufficient. For larger projects or projects involving contractors, the project software manager should base progress reviews around milestones. These milestones should be clearly defined and related to the product status (e.g., completion of the software requirements).

For each progress review (formal or informal) the following steps should be followed:

1) The project software manager schedules the progress reviews and determines the agenda. In more formal reviews, all expected participants are notified of their expected contributions. Any required presentation format or other constraints should be communicated to the individuals (or organizations) expected to present material. All participants should be made aware of the meetings’ objectives. If software work products are to be discussed at the meeting, they should be obtained and distributed prior to the meeting to allow adequate time for review.

2) During the meeting, the current project status and commitments are reviewed based upon information from software project members and software metric reports. The project software manager compares these to the expected project status and commitments as defined in the software project plans and schedule. If applicable, impending project-level changes should be discussed with the project manager, customer(s), user(s), or other discipline managers to determine potential changes in commitments or scope.

3) In more formal reviews, materials for review may be presented as slides and demonstrations. Formal inspection results and/or test results may be discussed. Specific agendas for the Software Requirements Review (SRR), Preliminary (software) Design Review (PDR), and Critical (software) Design Review (CDR) are described in IEEE STD.1028. These formal reviews are highly recommended for larger projects in which the project software manager is not closely involved with the technical aspects of the project or when one or more contractors are involved.

4) All currently open risk items are discussed to identify any change in their status or risk mitigation strategies. Based upon the project status discussion, materials reviewed, and/or metric reports, new risks may be identified. For documenting and handling identified risks, see 1.2.1.1 Perform Risk Management.

5) Issues identified during the meeting which require changes in software project plans (e.g., required changes in the Software Test Plan (STP) (see Appendix E) due to changes in the project schedule) should be handled in accordance with the SCMP. The project software manager is responsible for identifying risks or required changes in project-level plans and documentation in accordance with the Project Plan and project-level CMP.

Outputs

Identified risks to be documented (see activity 1.2.1.1 Perform Risk Management).

�1.2.1.3		Analyze Software Project Metrics

Overview

In this activity, cost data and software metric reports provided by the software engineering process group (SEPG) are reviewed and analyzed. Actual performance results are evaluated against planned rates of progress. Risks are identified and corrective actions are taken.

Roles and Responsibilities

The SEPG is responsible for providing the software metric reports to the project software manager, and may be asked to participate in analyzing and evaluating the software metrics.

The project software manager is responsible for analyzing the project metrics to determine the project’s status.

The project manager may be consulted on potential changes to the software schedules and budget.

The software engineering manager and software test manager will assist in evaluating the software metrics.

Controls

The organization’s software baseline (see activity 4.2.3 Analyze And Develop Software Baseline) which documents the organizational norms for the metrics collected.

Inputs

Software metric reports received from the SEPG.

Procedures

Throughout the software project’s life cycle, software metrics are entered into the software metrics database which is maintained by the SEPG. The SEPG supplies reports to the project software manager. When analyzing the software metric data, the project software manager should compare it to the organizational norms as defined in the organization’s software baseline. SEPG members also may be consulted when analyzing the software project metrics. Potential problems identified during the metrics analysis should be discussed with the software project personnel and identified as risks (see 1.2.1.1 Perform Risk Management). The current set of software metrics collected and reports generated are in the Langley Research Center’s (LaRC) Software Metrics Database User’s Guide. For security reasons, cost data is maintained separately. The following steps give general guidance on interpreting the software metrics. No order to the steps should be assumed.

1) The number of Software Change Requests (SCR) (see Appendix C) impacting a software product does not give insight into its quality, but does provide information on its stability. SCRs are to be expected initially after a software product is baselined, but their number should decrease over time. A software product with no SCRs indicates it is not being used or maintained. Of special concern are SCRs for the software requirements that may indicate the instability of project-level requirements or premature baselining. If the software requirements are being changed based on changes to the system requirements (as can be determined by reviewing the SCR forms), the project software manager and software engineering manager should review the software project’s scope to determine if the software project is still feasible based upon the current estimated schedule and budget. SCR information is currently being provided on the Project Change Profile Report.

2) When analyzing cost data, it is necessary to understand what work was completed, and to base the cost analysis on easily identifiable milestones such as completing a product or task. When one of these milestones is reached, the following cost analysis should be performed.

A) Determine the actual cost of the work performed (ACWP) to date. This information should be readily available from the cost database or spreadsheet.

B) Determine the budgeted cost of the work performed (BCWP). This is the previously budgeted cost of completing the work up to and including the newly reached milestone. This can be obtained from the software project’s cost estimate.

C) Determine the budgeted cost of the work scheduled (BCWS). This is the cost of the work which was to be completed by the current date. This can be obtained from the software project schedule and cost estimate.

D) Determine the Schedule Performance Index (SPI) for Efficiency. This is defined as BCWP divided by BCWS.

E) Compute the new Estimate at Completion (EAC) where:

	EAC = ACWP + ((1/SPI) * (Total budget for software project - BCWP))

This EAC assumes that progress will continue at the current rate. In certain cases, this may be pessimistic. If a non-recurring event caused a cost overrun, the following formula may be more appropriate:

	EAC = ACWP + (BAC-BCWP)

The computed EAC (and the values used to compute it) should be discussed with the project manager to determine if additional funding is required for the software effort. The updated EAC should be recorded in the cost database.

3) The number of Software Trouble Reports (see Appendix C) received indicates the number of problems encountered by the testers and/or users. A high number of the Software Trouble Reports that are determined not to be errors but user or tester mistakes indicates poor user or test documentation. The number of these reports should decline as the testing progresses. A possible sign of inadequate testing is having an overall low number of Software Trouble Reports, but the rate of these reports does not decline as testing progresses [SEL-84-101, p. 6-8]. Software Trouble Report information is currently being provided in the Project Error Reports, and should be discussed with the software test manager.

4) The hours spent on the software project are a good indicator of the software project’s health. Spending fewer hours than expected, even if the schedule and milestones are being met, may indicate that the software project is understaffed. Problems may show up later due to costly learning curves or the poor quality of products developed earlier. Spending more hours than expected may indicate the project is stalled and falling behind, or that problems were encountered. Effort information is currently being provided in the Project Activity Hours Report.

5) Change in size estimates is another key indicator of project stability [SEL-81-305, p. 53]. When size estimates increase, cost estimates and schedule estimates should be reconsidered. Growth in size estimates after baselining the software requirements also may indicate “requirement growth” or poor designs. Size information is currently being provided in the Project Status Report.

6) Based upon the project software manager’s review of the metric reports, risks may be identified (see 1.2.1.1 Perform Risk Manager) or software project plans may need to be updated or modified (see 1.2.1.4 Maintain Software Project Plans).

Outputs

Risks identified based upon the software project metrics.

The updated cost estimate recorded in the cost database.

�1.2.1.4		Maintain Software Project Plans

Overview

In this activity, the software project plans are updated based upon actual software project results, changes to the project plan, and risk mitigation activities. The plans are modified in accordance with the project’s Software Configuration Management (SCM) Plan (SCMP) (see Appendix E).

Roles and Responsibilities

The project software manger has overall responsibility for updating and maintaining all of the software project’s plans.

The software engineering manager is responsible for updating the Software Development Plan (SDP) (see Appendix E).

The software test manager is responsible for updating the Software Test Plan (STP) (see Appendix E).

The SCM manager is responsible for updating the SCMP.

Controls

The SCMP which documents what products will be kept under configuration control and the process to be followed when updating them.

Inputs

The software project plans to be updated.

The documented risks which have been identified and documented on the Risk Information Form(s) (see Appendix C).

Software metric reports from the software engineering process group (SEPG).

Procedures

When updating project plans, the project software manager, in coordination with the SCM manager, must determine what level of control should be kept on the software project plans. Normally, updates to software project schedule(s) showing work accomplished or minor plan changes do not need to go through the entire software change management process (i.e., writing Software Change Requests (SCR) (see Appendix C) (see 2.2.4 Request Software Product Change),and submitting these to the Software Control Board). This sort of minor update should be treated by the SCM manager as a product revision. Updates requiring changes in multiple plans (e.g., a change in the software engineering environment may cause changes in the software project training), the scope of the work to be performed (e.g, additional software to be developed) or impact the development or testing approach should go through the formal change process to verify all plan updates are coordinated and completed.

1) The project software manager should update the software project schedule (see activity 1.1.1.1.5 Develop Software Schedule) at least monthly, based upon the software project’s progress, completed milestones as documented in the software metric reports, and review of the cost estimates based upon the updated schedule and cost metric information (see activities 1.1.1.1.4 Perform Cost Estimating and 1.2.1.3 Analyze Software Project Metrics). Potential problems with meeting project-level cost or schedule constraints should be brought to the attention of the project manager as early as possible.

2) The project software manager, software test manager, software engineering manager, and SCM manager should jointly review the documented risks and the proposed risk mitigation strategies as documented on the Risk Information Form(s) (Appendix C). Risk mitigation approaches or risks that are realized should be addressed in the updated plans. These mitigation strategies and contingency plans often involve additional training, adding personnel or resources to the project, or using new methods or processes. In the case of additional training or resources, the relevant plans should be formally updated through the change control process as detailed in the Configuration Control section of the SCMP because these may impact the SDP (in terms of schedule and cost) as well as the Software Project Training Plan. In the case of trying new processes or methods that deviate from the organization’s standard software process to mitigate risks, the project software manager should submit a Request for Deviation/Waiver (see Appendix C) to the SEPG for approval (see 2.2.1 Request Deviation/Waiver).

3) The updated plans are approved by the project software manager and submitted to be placed under software configuration control in accordance with the project’s SCMP.

Outputs

The updated software plans which have been placed under software configuration control.

�1.2.2	Participate In Major Project Reviews

Overview

Throughout the course of the project, the project software manager will be asked to participate in project-level reviews. These reviews will vary between projects. In this activity, the general review process is outlined. For information on the various reviews, see Attachment II of this volume.

Roles and Responsibilities

The permanent secretary is responsible for scheduling in-house reviews, distributing all review notifications, documenting the reviews, and distributing review minutes.

The permanent chairperson serves as the chairperson for the review, appoints the panel members and permanent secretary, coordinates the agenda with the project manager, and manages the review.

Panel members are responsible for reviewing preparation material, and committing time for the full review period.

The project manager is responsible for requesting reviews or review waivers; ensuring that proper subsystem peer reviews are being held; scheduling contractor reviews; preparing and distributing review material; notifying NASA Headquarters personnel; developing agendas with the review chairperson; preparing and distributing panel preparation material; leading the project team in preparing for the review; ensuring the suitability of allotted times; ensuring timely responses to requests for action (RFA); and keeping the minutes, material, and RFAs from the reviews on file.

The project software manager is responsible for providing material to the project manager and may be asked to present this material at the review.

Controls

Management of Major System Programs and Projects [NHB 7120.5], NASA Headquarters, Washington, D.C., November 8, 1993. This handbook “establishes the detailed policies and processes for implementing NMI 7120.4, ‘Management of Major System Programs and Projects.’ ” NHB 7120.5 specifies the following six major project review for major system programs and projects:

System Requirements Review (SRR).

Preliminary Design Review (PDR).

Critical Design Review (CDR).

System Acceptance Review (SAR).

Flight Readiness Review (FRR).

Operational Readiness Review (ORR).

Langley Management Instruction (LMI) 7120.1 establishes the LaRC (Langley Research Center) Flight Projects and Experiments Review Program. LMI 7120.1 specifies the following eight major project reviews for the LaRC Flight Projects and Experiments:

1.	Spaceflight Experiments Initiatives Review (SEIR).

2.	System Requirements Review (SRR).

3.	Preliminary Design Review (PDR).

4.	Critical Design Review (CDR).

5.	System Acceptance Review (SAR).

6.	Flight Readiness Review (FRR).

7.	Mission Operations Review (MOR) (which may be a subreview of the FRR).

8.	Lessons Learned Review (LLR).

Inputs

Managerial and technical slides and project documentation for review.

Procedures

1) The project manager contacts the permanent chairperson to request a desired review date at least two months in advance. A tentative agenda with allotted times should accompany this request.

2) The permanent chairperson notifies participants of a review by a letter that is distributed by the permanent secretary. The letter includes the: review objective; date, time, place of the review; panel members for the review; and the tentative agenda with allotted times.

3) The project manager distributes advance review materials to all panel members at least 10 working days prior to the scheduled review date.

4) The project manager (supported by the project software manager and managers from other disciplines) presents the materials at the review. The panel members review the materials and participate in the review by asking pertinent questions. For a summary of the purpose and materials covered in the project reviews, see Attachment II, LMI 7120.1, and NHB 7120.5. During the review, RFAs are documented by attendees to request further information and/or document issues not adequately addressed at the review. Due dates are assigned to the RFAs. The project manager receives and responds to the RFAs. The project manager is responsible for ensuring that RFAs are closed by their due dates. The closures of the RFAs are normally covered at the next review.

5) The permanent secretary distributes the minutes and RFAs to the panel members, appropriate management officials, review attendees, and the Institutional Support Branch, Logistics Management Division, within 10 working days after the review is complete.

6) The project manager, together with the appropriate discipline managers (including software), work to resolve the RFAs. The resolution of these may result in writing Configuration Change Requests (CCR) (see Appendix C) to change system-level products.

Outputs

CCRs which request changes in system-level products.

�PAGE �

Software Management

�PAGE �iv�

Released 2/5/97

�PAGE �7�

Released 2/5/97

Project

Volume

SHARED

CSCI (M)

CSCI (L)

DOCUMENT

REUSE

CONFIG

DEVELOP

BASELINE

 (1.4)

INTEGRATION

 (1.3)

BASELINE

 (1.2)�

INTEGRATION

 (1.1)

USER (E)

USER(D)

INTEGRATION

 (1.5)

BASELINE

 (1.6)

REQUIRE

RESULTS

SOURCE

LIBRARY

DRIVERS

INTEGRATION

 (1.1)

TEST

DESIGN

MANUALS�

USERGUIDE

REPORTS

DOCUMENT

CONCEPT

ARCHTECH

DETAIL

PROCEDURES

PLANS

BASELINE

 (1.2)

RESULTS

SOURCE

LIBRARY

DRIVERS

TEST

DESIGN

MANUALS�

USERGUIDE

REPORTS

DOCUMENT

CONCEPT

REQUIRE

ARCHTECH

DETAIL

PROCEDURES

PLANS

REUSE

INTEGRATION (1.3)

LIBRARY

SOURCE

DOCUMENT

 TEST

PLANS

PROCEDURES

DRIVERS

RESULTS

REPORTS

REUSE

BASELINE

 (1.4)

LIBRARY

SOURCE

DOCUMENT

 TEST

PLANS

PROCEDURES

DRIVERS

RESULTS

REPORTS

REUSE

BASELINE

 (1.4)

LIBRARY

SOURCE

DOCUMENT

 TEST

PLANS

PROCEDURES

DRIVERS

RESULTS

REPORTS

SHARED

DOCUMENT

INTEGRATION (1.5)

PLANS

RESULTS

INTERFACES

GUIDES

DRIVERS

TEST

REPORTS

PROCEDURES

PLANS

