LaRC Measure Definitions
These are draft definitions copied from the

Software Metrics Database Requirements-v8.

The final definitions will be posted shortly.

Appendix A Software Measurement Data Dictionary

A.1 Data Types

This section defines data types for measures that share a common structure and meaning.

A.1.1 Person Name

A person name contains the first name, middle initial, and last name of a person. A name may contain only alphabetic characters, dashes/hyphens, or apostrophes. The first letter of the first and last names and the middle initial must be capitalized.
A.1.2 Phone Number

A phone number is a complete and unambiguous telephone number. For domestic calls, the measurement repository shall store the phone number using all ten digits (area code plus local number). For international numbers, the measurement repository shall store the country code, city code, and local number. The measurement system shall allow users to input truncated domestic phone numbers, i.e. local phone number or LaRC extension; but, the measurement system shall expand the number to the full ten digits for storage. Consequently, the measurement system will assume that any truncated number is a domestic number; international numbers must therefore be complete when entered. To distinguish between domestic and international numbers, the measurement system can require users to prefix international numbers with a ‘+’ or ‘011’. The measurement system shall allow the user to enter the number with a long distance (‘1’) or international (‘011’) prefix but shall not store the prefixes. The system shall only allow space, dash (‘-‘), plus (‘+’), or parentheses (‘(’ and ‘)’) as non numeric separators. The measurement system shall display domestic numbers in (xxx) xxx-xxxx or xxx-xxx-xxxx format where x is a digit. The measurement system shall display international numbers in +(country code)-(city code)-(local number) format where the local number may also contain dash (‘-‘) separators.
A.1.3 E-mail Address

An e-mail address is a string of the form ‘local_part@domain.name’. The measurement system shall accept only a complete address (i.e. no assumption of domain name if it is missing). The address is assumed to be case sensitive and its case must be preserved. The local_part is restricted to alphanumeric characters, ‘!’, ‘#’, ‘$’, ‘%’, ‘&’, ‘'’, ‘*’, ‘+’, ‘-‘, ‘/’, ‘=’, ‘?’, ‘^’, ‘_’, ‘`’, ‘{‘, ‘|’, ‘}’, ‘~’, and ‘.’. The local part cannot begin or end with a period. The domain name may only contain alphanumeric characters, hyphens, and periods. The electronic repository shall provide at least 320 characters to store the e-mail address. (The SMTP protocol allows up to 64 characters for the local part and 255 characters for the domain name. Including the ‘@’, 320 characters are required to hold a valid name.)

A.1.4 Ordinal Scale

An ordinal scale is a range of integer values. The LaRC measurement program uses ordinal scales to quantify subjective evaluation of the software project or product. The data submitter can pick one integer in the range to represent their perception of how well the project or product performed relative to a given characteristic. The data submitter can choose only one integer value. The ordinal scale cannot be treated as if its values are equidistant measures of performance without additional experiments to prove that most submitters perceive the scale as equidistance. Therefore, one cannot take the average of an ordinal scale; however, the mode and median are valid means of aggregating ordinal scale values.
A.1.5 Date

A date is a numeric day, month, and year. Dates shall be displayed in the form mm/dd/yyyy, where mm is the two digit month, dd is the two digit day, and yyyy is the four digit year. Single digit months and days shall be prefixed with a zero. The measurement system shall allow users to submit dates with single digit month and day and two digit year. The measurement system shall assume that all two digit years occur in the current century, e.g. entering ‘89’ results in 2089. The day and month are of type Ordinal Scale beginning with one, i.e. January is month 1 and the first day of the month is 1.

A.1.6 Cost

The cost data type has units of dollars. Cost shall be displayed with a ‘$’ prefix and a comma separator after every third digit counting from the least significant digit, e.g. one million dollars would be displayed as $1,000,000. The measurement system shall allow the user to enter cost with or without the ‘$’ prefix and with or without comma separators. The measurement system shall also accept cents as part of an entry when the cents are expressed as a decimal point followed by two digits; but, the measurement system shall ignore the cents.

A.1.7 Enumeration

An enumeration is a list. For example, the enumeration of NPR 7150.2 software classes is A, B, C, D, E, F, G, and H. An enumeration of target operating system (OS) may be Microsoft Windows, Mac OS, Linux, Solaris, IRIX, VxWorks, AIX, and HP-UX. An enumeration may allow one selection or multiple selections from the list. For example, only one NPR 7150.2 class may be selected for a project. However, more than one target OS may be selected for the project. An enumeration may allow a custom entry. For example, a user can type PalmOS as the target OS even though it is not on the list. An enumeration may be fixed or self-expanding. A fixed enumeration does not change its list when a custom entry is made. A self-expanding enumeration adds custom entries to the list as they are submitted. If the target OS enumeration is fixed, then the user entry PalmOS will not appear in future views of the list. If the target OS enumeration is self-expanding, then PalmOS will appear on the list when the list is next accessed.

A.1.8 WYE (Work Year Equivalent)

WYE is a unit of effort that approximates the amount of time the average worker spends working in one year. A WYE is 1840 Effort Hours; this number assumes six weeks of holidays and leave on average.

A.1.9 Effort Hour

An effort hour is the one hour of time that a team member charges to a project.

A.1.10 Software Size

Software size has two components, a unit and the number of units present in (or estimated for) a software product. Allowable units are LOC, FP, and Elements. A LOC is a non-blank, non-comment line of source code. A FP is a function point. An Element is a catch-all for higher-level constructs; examples include but are not limited to classes, blocks (e.g. Mathworks Simulink blocks), functions, macros, or files. The number of units is a positive integer. The metrics database prompts for and captures both the unit and number of units.
A.2 Data Adornments

Some measures are captured multiple times during the project lifecycle or are captured at specific events that modify their meaning. Adornments are used to identify multiple records or modified meanings for measures. Adornments follow the measure and are enclosed in braces {}. This section provides a description for each adornment.

A.2.1 {Current Fiscal Year}

{Current Fiscal Year} has the same meaning as {Fiscal Year} and identifies the “given fiscal year” as the fiscal year in which the measure was submitted. This adornment is used only for the description of metrics database fields to identify the fiscal year, with which a measure submission will be associated.

A.2.2 {End Development}

{End Development} refers to the latest value at the time that the software products are accepted for their intended use, i.e. the project ends the development phase and transitions to operations and maintenance. For measures with a reporting period (e.g. Actual Cost), this adornment represents the period from {Start Development} to {End Development}.

A.2.3 {End Maintenance}

{End Development} refers to the latest value at the time that the project is closed. For measures with a reporting period (e.g. Actual Cost), this adornment represents the period from {Start Maintenance} to {End Maintenance}.

A.2.4 {Fiscal Year}

The measure associated with a “given fiscal year”. Unless otherwise specified, the “given fiscal year” is the fiscal year at the time of submission (applies to metrics database field description) or the selected fiscal year for an analysis algorithm (applies to information product descriptions). For measures with a reporting period, the period is the fiscal year. For actual measures, this is the value of the measure at the end of the fiscal year. For planned measures, this is the value of the measure at the start of the fiscal year.

A.2.5 {Next Fiscal Year}

{Next Fiscal Year} has the same meaning as {Fiscal Year} and identifies the “given fiscal year” as the year that follows the selected year for an analysis algorithm. This adornment is only used in the description of information products (e.g. indicators).

A.2.6 {Prior Fiscal Year}

{Prior Fiscal Year} has the same meaning as {Fiscal Year} and identifies the “given fiscal year” as the fiscal year prior to the time of submission (applies to metrics database field description) or prior to the selected fiscal year for an analysis algorithm (applies to information product descriptions). For collection, this adornment is frequently applied to actual data and is the fiscal year, to which the collected measure is assigned. Actual data is collected after its associated fiscal year ends, i.e. that fiscal year is prior to the year when the data is submitted.

A.2.7 {Last Submission}

{Last Submission} is the value of the measure last submitted to the metrics database. This data may have been submitted on a different form than the current form. For example, when the a new Annual Maintenance form is filled out, a Number of Open Defects {Last Submission} value may come from a prior Annual Maintenance submission or an End Development submission.

A.2.8 {Start Development}

{Start Development} refers to the current value at the time that the software project plan is first baselined. Planned values with this adornment represent the planned total for the {Start Development} to {End Development} period.
A.2.9 {Start Maintenance}

{Start Maintenance} refers to the current value at the time that the software project begins the maintenance and operations phase.

A.3 Data Definitions

The section describes each measure. The section provides a definition of the measure and specifies the following attributes to be implemented by the metrics collection database:

· Name. This is the name of the datum field.

· Type. This is the data type. Some.

· Required: Yes or No. Specifies whether the field is required to perform the next Submit action. A “Yes” may be followed by a list of classes in parenthesis. The measure is required for the listed classes but optional for others. Without a list, the measure is required for all classes.

· Values: This optional attribute is used to define the selections in an enumerated type or ordinal scale.

· Rules. This optional attribute specifies any additional validity rules for the data.

· Help Text. This optional attribute provides the help text that accompanies the field.

· Notes. This optional attribute provides additional information about the field which may include implementation options and additional requirements.

Some attributes may have multiple entries based on adornments.
A.3.1 Administrative Data

Administrative data are necessary to conduct the measurement program but are not inputs for the indicators. Some of this data identifies the project and major stakeholders. All indicators are an aggregation of project data without attribution to individual projects or to individuals.
A.3.1.1 Project Name (M1-1)

The project name is an alphanumeric string identifying the project. The Software Manager will be encouraged to use the full name of the project, not an acronym. The project name is used to submit and retrieve data from the project’s data record.
· Name: Project Name

· Data Type: character string

· Required: Yes

· Rules:

· The string is between 8 (TBR) and 255 (TBR) characters. This rule is designed to encourage unique project names.

· The string may not contain any of the following characters: ASCII characters 1- 31, ‘\’, ‘/’, ‘:’, ‘*’, ‘?’, ‘”’, ‘<’, and ‘>’. This rule allows the project name to be used in a file name.

· The string does not match an existing project name, ignoring case and white space.

· Help Text: Give the project a name. Make the name unambiguous and unique by using full text instead of abbreviations and acronyms. For example, one should enter “Crew Launch Vehicle Flight Control Software” instead of “CLV FCS”.

A.3.1.2 Software Manager’s Name (M1-2)

The software manager’s name is a Person Name data type containing the name of the software manager. For projects under contract, the technical monitor for the contract is substituted for the contract’s Software Manager. The name is used in automated e-mails and other correspondence related to the Center measurement program. The name may also be used to lookup X.500 directory information on the individual.

· Name: Software Manager’s Name

· Data Type: person name

· Required: Yes. Middle initial is optional.

· Help Text: Enter the name of the Software Manager as defined in LMS-CP-5528 or, if the project is performed entirely under contract, enter the name of the Contract Technical Monitor as defined in LMS-CP-5532.

A.3.1.3 Software Manager’s E-mail Address (M1-3)

The software manager’s e-mail address is an E-mail Address data type containing the contact e-mail address of the software manager (M1-2
). The e-mail address is used to send automated e-mails and other correspondence to the software manager.

· Name: Software Manager’s E-mail

· Data Type: e-mail address

· Required: Yes

· Rules: The e-mail address must have a nasa.gov domain.

· Help Text: Enter the NASA e-mail address of the Software Manager as defined in LMS-CP-5528 or, if the project is performed entirely under contract, enter the e-mail address of the Contract Technical Monitor as defined in LMS-CP-5532.

A.3.1.4 Software Manager’s Phone Number (M1-4)

The software manager’s phone number is a Phone Number data type containing the contact phone number of the software manager (M1-2
). The SEPG will use the phone number as a back-up line of communication if e-mail communication is failing.

· Name: Software Manager’s Phone Number

· Data Type: phone number

· Required: Yes

· Help Text: Enter the work phone number of the Software Manager as defined in LMS-CP-5528 or, if the project is performed entirely under contract, enter the phone number of the Contract Technical Monitor as defined in LMS-CP-5532.

A.3.1.5 Software Manager’s Organization Code (M1-5)

The development organization is the name of the organization responsible for developing the software product. In the case of multi-organizational teams, this is the organization to which the software manager is assigned. Civil servants should use the organization code of their branch. Contractors should use the name of company primarily responsible for developing the software; if more than one company is involved in development of the product, then the company performing management of the integrated software product is listed as the development organization. This datum provides the option of drilling down any indicator to the branch or company level.

· Name: Software Manager’s Organization

· Data Type: enumeration

· Required: Yes

· Values: Langley Research Center organization codes with organization name (see section Error! Reference source not found. for organization code requirements.)

· Rules: One selection. Custom entry allowed. (see section Error! Reference source not found. for additional requirements.)

· Help Text: Enter the organization code of the Software Manager as defined in LMS-CP-5528 or, if the project is performed entirely under contract, enter the organization code of the Contract Technical Monitor as defined in LMS-CP-5532.

A.3.1.6 Customer’s Name (M1-6)

 Customer’s Name is the name of the requester’s as defined in LMS-CP-5528 [Error! Reference source not found.]. In this document, “requester” and “customer” are synonymous. The Customer’s Name is used in automated e-mails and other correspondence related to the Center measurement program.

· Name: Customer’s Name

· Data Type: person name

· Required: Yes. Middle initial is optional.

· Help Text: The name of the person responsible for accepting the software product. This person has the role of Requester in LMS-CP-5528.

A.3.1.7 Customer’s E-mail Address (M1-7)

The Customer’s E-mail Address is the e-mail contact for the requester as defined in LMS-CP-5528 [Error! Reference source not found.]. In this document, “requester” and “customer” are synonymous. The Customer’s E-mail Address is used to send automated e-mails and other correspondence to the requester.

· Name: Customer’s E-mail

· Data Type: e-mail address

· Required: Yes

· Help Text: The e-mail address of the person responsible for accepting the software product. This person has the role of Requester in LMS-CP-5528.

A.3.1.8 Customer’s Phone Number (M1-8)
The Customer’s Phone Number is the contact phone number of the requester as defined in LMS-CP-5528 [Error! Reference source not found.]. In this document, “requester” and “customer” are synonymous The SEPG will use the phone number as a back-up line of communication if e-mail communication is failing.

· Data Type: phone number

· Required: No

· Rules: .

A.3.1.9 Customer’s Organization Type (M1-9)
The Customer’s Organization Type specifies the relationship between the requester and LaRC. The available selections are:

· Name: Customer’s Organization

· Data Type: enumeration

· Required: Yes

· Values:

· Langley Research Center

· Other NASA Center

· Department of Defense (DoD)

· Federal Aviation Administration (FAA)

· National Oceanic and Atmospheric Administration (NOAA)

· Other U.S. Government Partner

· Foreign Government Partner

· Commercial Partner

· Academic Partner

· Other

· Rules: Allow only one selection. No custom entries.

· Help Text: Select the organization that the Requester represents.

A.3.2 Project Characteristics

A.3.2.1 Application Domain (M2-2)

The application domain broadly indicates the purpose of the software product. Some application domains require greater process rigor and documentation; thus, application domains can have different cost, schedule, and scope characteristics.

· Name: Application Domain

· Data Type: enumeration

· Required: Yes

· Values:

· Flight & Ground Systems

· Advanced Technology Development

· Basic & Applied Research

· Institutional Infrastructure

· Ground Test Facilities

· Rules: Allow only one selection. No custom entries.

· Help Text: Enter one of the following application domains:

· Flight & Ground Systems – This application domain encompasses all software installed on spacecraft or flight test products and all ground systems that participate in the mission operations of spacecraft or flight test products.

· Advanced Technology Development – This application domain encompasses all software used in research projects that have matured to technology readiness level (TRL) four or above.

· Basic & Applied Research – This application domain encompasses all software used in research projects that have a TRL below four.

· Institutional Infrastructure – This application domain encompasses all software used within NASA’s information infrastructure (financial systems, communications, construction and renovation of buildings, asset management, etc).

· Ground Test Facilities – This application domain encompasses software used in the startup, operation, and shutdown of wind tunnels, engine test stands, vacuum chambers, structural test laboratories, and similar facilities. Software in this category typically resides in data acquisition systems, automation systems, control systems, personnel and equipment safety and health monitoring systems, and related systems that are a permanent part of a facility.

A.3.2.2 Software Class (M2-3)

NPR 7150.2 defines eight classifications of software and designates them A-H. Definitions of each class can be found in the NPR. The LaRC Software Measurement Program covers only classes A through E.

· Name: Software Class

· Data Type: enumeration

· Required: Yes

· Values: A through E

· Rules: Allow only one selection. No custom entries.

· Help Text: Select the software class (A-E) as defined in NPR 7150.2 NASA Software Engineering Requirements. If the project produces software with different classifications, select the highest class among the software products.

A.3.2.3 Project Type (M2-5)

The LaRC Measurement Program recognizes two types of projects: development and maintenance. A development project creates a new product or a significant functional upgrade of an existing product. A development project is defined by a set of functional requirements from a requester, and the development project implements the requirements under a project plan with negotiated constraints on budget, schedule, and resources. A development project ends when the requester accepts the product or the project is canceled prior to product completion. A maintenance project maintains an existing software product during the operations phase. The maintenance project performs bug-fixes or enhancements in response to change requests and/or problem reports (e.g. work on demand). The maintenance project’s budget is typically a set amount determined each fiscal year. The maintenance project may have a dedicated staff and/or relies on developers that are on-call. A development project may transition into a maintenance project when its products have been accepted by the requester for operations.

· Name: Project Type

· Data Type: enumeration

· Required: Yes

· Values:

· Development

· Maintenance

· Rules: Allow only one selection. No custom entries.

· Help Text: Specify whether the project is development or maintenance. A development project creates or updates a software product and is defined by a plan based upon a set of requirements. Maintenance projects operate and maintain existing projects. Maintenance projects are characterized by ad hoc tasking in response to change requests. The tasking may fix defects or add enhancements to the software products. Funding for maintenance may be a level of effort or it may come from a funding pool for a broader set of activities. If a project begins with an existing product, the user should not automatically select maintenance as the start state. If the project will make a planned upgrade to the product based on a set of requirements, then the user should start the project in the development state. Maintenance is the proper selection only when change requests are the sole basis for defining work.
A.3.3 Customer Satisfaction

A.3.3.1 Customer Satisfaction with Cost (M3-1)

Customer satisfaction on cost is an ordinal scale data type with a range from 1 to 5. The ordinals are labeled as follows: 1 = “very poor”, 2 = “poor”, 3 = “fair”, 4 = “good”, 5 = “very good.”

· Name: Satisfaction with the cost of the project

· Data Type: ordinal scale

· Required: Yes

· Values: 1 to 5

· 1 = very poor

· 2 = poor

· 3 = fair

· 4 = good

· 5 = very good

· Rules: Allow only one selection.

· Help Text: Rate how well the actual cost of the project met your expected cost.

A.3.3.2 Customer Satisfaction with Quality (M3-2)

Customer satisfaction on quality is an ordinal scale data type with a range from 1 to 5. The ordinals are labeled as follows: 1 = “very poor”, 2 = “poor”, 3 = “fair”, 4 = “good”, 5 = “very good.”

· Name: Satisfaction with the quality of the software products received

· Data Type: ordinal scale

· Required: Yes

· Values: 1 to 5

· 1 = very poor

· 2 = poor

· 3 = fair

· 4 = good

· 5 = very good

· Rules: Allow only one selection.

· Help Text: Rate how well the quality of the software products received met your expectations.

A.3.3.3 Customer Satisfaction with Project Duration (M3-3)

Customer satisfaction on project duration is an ordinal scale data type with a range from 1 to 5. The ordinals are labeled as follows: 1 = “very poor”, 2 = “poor”, 3 = “fair”, 4 = “good”, 5 = “very good.”

· Name: Satisfaction with the timeliness of receiving software products or product changes

· Data Type: ordinal scale

· Required: Yes

· Values: 1 to 5

· 1 = very poor

· 2 = poor

· 3 = fair

· 4 = good

· 5 = very good

· Rules: Allow only one selection.

· Help Text: Rate how well the project met your expectations on the delivery dates for software products or product changes.

A.3.3.4 Customer Satisfaction with Functionality (M3-4)

Customer satisfaction on functionality is an ordinal scale data type with a range from 1 to 5. The ordinals are labeled as follows: 1 = “very poor”, 2 = “poor”, 3 = “fair”, 4 = “good”, 5 = “very good.”

· Name: Satisfaction with the features of the software products

· Data Type: ordinal scale

· Required: Yes

· Values: 1 to 5

· 1 = very poor

· 2 = poor

· 3 = fair

· 4 = good

· 5 = very good

· Rules: Allow only one selection.

· Help Text: Rate how well the software products met your expectations on features implemented.

A.3.3.5 Improvement Suggestions from Customers (M3-5)

Improvement suggestions from customers is a free-text datum that contains a customer’s typed suggestions for improving LaRC projects.

· Name: What could the project or Langley have done to improve results?

· Data Type: free text

· Required: No

· Help Text: Provide suggestions on actions that the project or Langley Research Center could have taken to improve your satisfaction with the cost, features, quality, or delivery dates of the software products.

A.3.3.6 Customer Comments on Actions Hindering Success (M3-6)

Customer Comments on Actions Hindering Success is a free-text datum that contains a customer’s typed comments on how project actions that hindered success. The customer should be encouraged to describe the reasons for a dissatisfied rating here (a 1 or 2 rating in measures M3-1, M3-2, M3-3, or M3-4).

· Name: What project actions obstructed mission success?

· Data Type: free text

· Required: No

· Help Text: Describe any actions by the project that obstructed mission success.

A.3.3.7 Customer Comments on Actions Promoting Success (M3-7)

Customer Comments on Actions Facilitating Success is a free-text datum that contains a customer’s typed comments on project actions that promoted success.

· Name: What project actions advanced mission success?

· Data Type: free text

· Required: No

· Help Text: Describe any actions by the project that improved chances for mission success.
A.3.4 Project Management Data

A.3.4.1 Planned Cost (M4-1)

Planned cost is the budgeted, non-labor cost for the project over a specified period. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and services. It does not include ordinary costs of the projec team that the project does not fund like ODIN seats. Most costs can be tracked using travel vouchers and purchase orders.
· Name:

· {Project Start}: Planned Development Cost

· {Current Fiscal Year}: Planned Budget for the Current Fiscal Year

· Type: Cost

· Required: Yes (Software Class == A | B)

· Rules: Cost must be greater than or equal to zero.

· Help Text:

· {Project Start}: Enter the budgeted non-labor cost of the project from start of development to product acceptance by the customer. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and services. It does not include ordinary costs of the project team that the project does not fund for like ODIN seats.

· {Current Fiscal Year}: Enter the budgeted non-labor cost of the project for the current fiscal year. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and services. It does not include ordinary costs of the project team that the project does not fund like ODIN seats.

A.3.4.2 Actual Cost (M4-2)

Actual Cost is the cumulative non-labor expenditures of the project over a specified period. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and services. It does not include ordinary costs of the project team that the project does not fund like ODIN seats. Most costs can be tracked using travel vouchers and purchase orders.

· Name:

· {Prior Fiscal Year}: Actual Cost (Fiscal Year Ending)

· {End Development}: Actual Cost (Project Total)

· {End Maintenance}: Actual Cost of Maintenance (Fiscal Year to Date)

· Type: Cost

· Required: Yes (Software Class == A | B)

· Rules: Cost must be greater than or equal to zero.

· Help Text:

· {Prior Fiscal Year}: Enter the cumulative, non-labor cost that the project incurred during the fiscal year recently ended. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and third-party services (consultants, media services, technical support, etc.). It does not include ordinary costs of the project team that the project does not directly fund like ODIN seats. Most costs can be tracked using travel vouchers, purchase card statements, and purchase orders.

· {End Development}: Enter the total, non-labor cost of the project from inception to product acceptance. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and third-party services (consultants, media services, technical support, etc.). It does not include ordinary costs of the project team that the project does not directly fund like ODIN seats. Most costs can be tracked using travel vouchers, purchase card statements, and purchase orders.

· {End Maintenance}: Enter the cumulative, non-labor cost that the project has spent on maintenance from the start of the fiscal year to project close. Non-labor costs are funds that the project spends on items other than labor including but not limited to travel, training, materials (including computer hardware and software licenses), and third-party services (consultants, media services, technical support, etc.) . It does not include ordinary costs of the project team that the project does not directly fund like ODIN seats. Most costs can be tracked using travel vouchers, purchase card statements, and purchase orders.
A.3.4.3 Planned End Date (M4-5)

Planned End Date is the planned completion date on the project schedule; for development projects, completion is defined as the date when customer accepts the software for its intended use..

· Name: Planned End Date

· Type: date

· Required: Yes

· Rules: Date must be in the future at time of submission.

· Help Text: Enter the planned date when development will end, i.e. products are accepted for their intended use.

A.3.4.4 Actual Start Date (M4-6)

Actual Start Date is the actual date that the project started.

· Name: Actual Start Date

· Type: date

· Required: Yes

· Rules: Date must equal or precede the date of submission.

· Help Text: Enter the date when the project started.

A.3.4.5 Actual End Date (M4-7)

Actual End Date is the date when the software product(s) are accepted by the Customer for its intended use.

· Name: Actual End Date

· Type: date

· Required: Yes

· Rules: Date must equal or precede the date of submission.

· Help Text: Enter the date when the project completed development, i.e. the date that the Customer accepted the software product(s) for its intended use.

A.3.4.6 Planned Effort (M4-8)

Planned effort is the estimated effort for project activities planned within a specified period.

· Name:

· {Project Start}: Planned Development Effort

· {Current Fiscal Year}: Planned Effort for the Current Fiscal Year

· Type: WYE

· Required: Yes

· Rules: Effort must be greater than or equal to zero.

· Help Text:

· {Project Start}: Enter the estimated effort required to develop the software products.

· {Current Fiscal Year}: Enter the estimated effort on the project for the current fiscal year.

A.3.4.7 Actual Effort (M4-9)

Actual Effort the cumulative WYE expended on the project activities performed in a specified period.

· Name:

· {Prior Fiscal Year}: Actual Effort (Fiscal Year Ending)

· {End Development}: Actual Effort (Project Total)

· {End Maintenance}: Actual Maintenance Effort (Fiscal Year to Date)

· Type: WYE

· Required: Yes

· Rules: Effort must be greater than or equal to zero.

· Help Text:

· {Prior Fiscal Year}: Enter the effort charged to the project during the fiscal year recently ended.

· {End Development}: Enter the total effort charged to the project from inception to product acceptance.

· {End Maintenance}: Enter the effort spent on maintenance for this fiscal year to date.

A.3.4.8 Most Important Constraint (M4-13)

Most Important Constraint is the project constraint that has the least capacity for change. The project constraints are scope, budget, and schedule. For example, if the project must meet a fixed launch date, then schedule should the most important constrain. Likewise, if the work is being funded by a fixed grant, then budget should the most important constraint.

· Name: Most Important Constraint

· Type: enumeration

· Required: Yes

· Values: Scope, Budget, Schedule

· Rules: One selection. No custom entries.

· Help Text: Select the project constraint with the least room for change. For example, if the project was funded by a fixed grant, then budget would be the most important constraint. If the project must meet a launch window, then schedule is likely to be the most important constraint. If a project is developing a unique, state-of-the-art test capability on behalf of the Agency, then scope may be the most important constraint. Though projects are often pressured to meet their initial commitments on all three constraints, you must pick one constraint as most important; this is the constraint, for which requests for relief were most likely to be denied.
A.3.5 Product Characteristics

A.3.5.1 Actual Software Size (M5-1)

Actual Software Size is the current size of the software product(s). The size includes software developed and maintained by NASA civil servants and NASA contractors and includes both new and reused software. However, the size count does not include software like Commercial Off-the-Shelf (COTS) that is developed and maintained by independent developers (but the count does include any modifications to such software made by civil servants or contractors).

· Name: Actual Software Size

· Type: Software Size
· Required: Yes

· Help Text: Enter the current size of the software product(s) developed or maintained by the project. Include software developed and maintained by NASA civil servants and NASA contractors. Include both new and reused software. Do not include software that is developed and maintained by independent developers like Commercial Off-the-Shelf (COTS); but do include any modifications to such software that are made by civil servants or contractors. Size can be expressed in Line of Code (LOC), Function Points (FP), or Elements. A LOC is a non-blank, non-comment line of source code. An Element is a catch-all for higher-level constructs; examples include but are not limited to classes, blocks (e.g. Mathworks Simulink blocks), functions, macros, or files. The preferred unit of size is LOC. If the size cannot be counted with a common unit, then provide the unit count that covers the majority of the development or maintenance effort. For LOC, the project can combine estimated LOC counts from different languages used on the project. Likewise, the project can combine element counts.
A.3.5.2 Primary Language (M5-3)

Primary Language is the programming language or software construction tool used to develop the majority of the new software on the project.

· Name: Primary Language

· Type: Enumeration
· Values: C, C++, Java, FORTRAN, ADA, Matlab, Simulink, Visual Basic, Perl, mixed.

· Rules: One selection. Custom entries allowed. Self-expanding.

· Required: Yes

· Help Text: Enter the programming language or tool used to develop the majority of new software on the project. If no single language or tool represents the majority of new code, select ‘mixed.’
· Notes: Maintain list in lexicographic order.
A.3.6 Product Data

A.3.6.1 Number of Requirements (M5-6)
Number of Requirements is the current count of baselined requirements.

· Name: Number of Requirements

· Type: integer

· Rules: Must be greater than zero.

· Required: Yes

· Help Text: Enter the current number of baselined requirements.
A.3.6.2 Number of Requirements Changes (M5-8)
Number of Requirement Changes is the number of requirements added, deleted, or modified over the period specified by the adornment.

· Name: Number of Requirement Changes

· Type: integer

· Rules: Must be greater than zero.

· Required: Yes (Software Class == A | B)

· Help Text:

· {End Development}: Enter the number or requirements added, deleted, or modified since the requirements were first baselined.
A.3.6.3 Number of Requirements Verified (M5-9)
Number of Requirement Verified is the number of requirements in the current baseline that the project has verified to be correctly implemented by the software.

· Name: Number of Requirement Verified

· Type: integer

· Rules: Must be greater than zero.

· Required: Yes

· Help Text: Enter the number or requirements in the current baseline that the project has verified to be correctly implemented by the software.
A.3.6.4 Number of Defects Reported (M6-1)
Number of Defects Reported is the number of defects that were reported over a specified period and that have confirmed by the project. An adornment normally specifies the period.

· Name:

· {End Development} Number of Defects Reported (Total)

· {Prior Fiscal Year} Number of Defects Reported (Fiscal Year Ending)

· {End Maintenance} Number of Defects Reported (Fiscal Year To Date)

· Type: integer

· Rules: Cannot be negative.

· Required: Yes

· Help Text:

· {End Development}: Enter the number of defects recorded during the project’s verification and validation activities (e.g. peer reviews, unit testing, qualification testing, and acceptance testing).

· {Prior Fiscal Year}: Enter the number of defects that were reported during the last fiscal year and that were confirmed by the project.

· {End Maintenance}: Enter the number of defects that were reported during operations this fiscal year and that were confirmed by the project. If the project ended development and maintenance in the same fiscal year, then enter the number of defects reported since product acceptance. Otherwise, enter the number of defects reported since the start of the fiscal year.
A.3.6.5 Number of Defects Resolved (M6-5)
Number of Defects Resolved is the number of defect reports that were closed over a specified period. An adornment normally specifies the period.

· Name:

· {End Development} Number of Defects Resolved (Total)

· {Prior Fiscal Year} Number of Defects Resolved (Fiscal Year Ending)

· {End Maintenance} Number of Defects Resolved (Fiscal Year To Date)

· Type: integer

· Rules: Cannot be negative.

· Required: Yes

· Help Text:

· {End Development}: Enter the number of defects closed when the software product(s) was accepted by the customer.

· {Prior Fiscal Year}: Enter the number of defects closed during the last fiscal year.

· {End Maintenance}: Enter the number of defects that were closed during operations this fiscal year. If the project ended development and maintenance in the same fiscal year, then enter the number of defects closed since product acceptance. Otherwise, enter the number of defects closed since the start of the fiscal year.
A.3.6.6 Number of Defects Open (M6-6)
Number of Defects Open is the number of reported defects that remain unresolved as of a given date. An adornment normally specifies the date.

· Name:

· {End Development} Number of Defects Open at Acceptance

· {Prior Fiscal Year} Number of Defects Open (Fiscal Year Ending)

· {End Maintenance} Number of Defects Open (Project Close)

· Type: integer

· Rules: Cannot be negative.

· Required: Yes

· Help Text:

· {End Development}: Enter the number of defects that remained open when the customer accepted the software product(s).

· {Prior Fiscal Year}: Enter the number of defects that remained open at the end of last fiscal year.

· {End Maintenance}: Enter the number of defects that remained open when the project closed.
A.3.7 Process Maturity

A.3.7.1 CMMI Rating Query (M7-1)
This datum indicates whether the development organization has obtained a rating against the CMMI. Organizations may claim a rating only if the rating was given by an SEI authorized lead appraiser and the rating is listed by the SEI

· Name: Does the software organization have a CMMI-DEV rating?

· Type: Boolean

· Value: Yes or No

· Required: Yes (Software Class == A || Software Class == B)

· Rules: Default value is ‘No’. Whether the field is required or not, the database will assign a value of ‘No’ if the field is not otherwise changed to ‘Yes’ upon submission.

· Help Text: Select ‘Yes’ if the software organization has a non-expired Capability Maturity Model Integration® for Development (CMMI-DEV) rating as measured by a Software Engineering Institute (SEI) authorized or certified lead appraiser. Otherwise, select ‘No’.

A.3.7.2 CMMI Rated Organization (M7-5)

This field provides the name of the rated development organization as it appears on the Appraisal Disclosure Statement. This allows users to find the organization on SEI’s list of rated organizations.
· Name: Name of rated organizational unit

· Type: free text

· Required: Yes (if ‘CMMI Rating Query’ == Yes)

· Rules: No entry allowed if ‘CMMI Rating Query’ == No.

· Help Text: Provide the name of the organizational unit with the CMMI-DEV rating. You should write the name as it appears on the Appraisal Disclosure Statement (ADS).

A.3.7.3 CMMI Rating (M7-6)

This field captures the rating obtained by the development organization. The rating is captured as a maturity level or simply ‘capability levels’ which indicates that the rating uses the continuous model. If more information is needed on the capability levels of an organization rated on the continuous model, that information should be accessible through SEI’s list of rated organizations.
· Name: CMMI Rating

· Type: enumeration

· Values: Capability Levels, Maturity Level 2, Maturity Level 3, Maturity Level 4, Maturity Level 5

· Required: Yes (if ‘CMMI Rating Query’ == Yes)

· Rules: No default value; the software manager must select a value. Allow only one selection. No custom entries. No entry allowed if ‘CMMI Rating Query’ == No.

· Help Text: Provide the CMMI-DEV rating of the software organization. If the organization has a rating under the continuous representation, select ‘Capability Levels’ if the rating is not equivalent to a maturity level; otherwise, select the equivalent maturity level.

A.3.7.4 LMS Procedure Improvement Suggestion (M7-2)

LMS Procedure Improvement Suggestion is a free text suggestion(s) from the Software Manager on how Langley can improve its software engineering procedures.

· Name: How Langley can improve its LMS procedures for software engineering?

· Type: free-text

· Required: No

· Help Text: Provide any suggestions that you may have on improving the Langley Management System (LMS) procedures for software engineering.
A.3.7.5 Greatest Challenge Faced by Project (M7-3)

Greatest Challenge Faced by Project is a narrative on the projects greatest obstacle to achieving mission success.

· Name: Describe the project’s greatest obstacle to mission success.

· Type: free-text

· Required: No

· Help Text: None.
A.3.7.6 Project Best Practices (M7-4)

Project Best Practices is a free-text list of practices that were valuable to achieving mission success.

· Name: Describe project practices that were valuable to acheiveing mission success.

· Type: free-text

· Required: No

· Help Text: None.
A.3.8 Safety and Mission Assurance

A.3.8.1 Safety-Critical Determination (M10-1)
Safety-Critical Determination identifies whether the project is developing safety critical software.

· Name: Safety-Critical Software?

· Type: Boolean.

· Value: Yes or No.

· Required: Yes

· Help Text: Select Yes if the project will develop safety-critical software. Select No otherwise.
LaRC Measure Definitions V1.doc

1 of 19

