Software Measurement Description
For NASA Langley Research Center
Michael M. Madden

Software Engineering Process Group (SEPG)

Langley Research Center

Date: November 20, 2008
Revision: DRAFT 15
[image: image27.emf]Rating not required and not

reported.

Maturity/Capability Level

Rating achieved, with date

CM

PPQA

MA

SAM

PMC

PP

REQM

Abbr

.

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL3

FY06

CL3

03/06

Rating required. No Rating

Reported.

Configuration Management

Process and Product

Quality Assurance

Measurement and Analysis

Supplier Agreement

Management

Project Monitoring and

Control

Project Planning

Requirements Management

Organizational Status

Process Area

Rating not required and not

reported.

Maturity/Capability Level

Rating achieved, with date

CM

PPQA

MA

SAM

PMC

PP

REQM

Abbr

.

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL2

FY07

CL3

FY06

CL3

03/06

Rating required. No Rating

Reported.

Configuration Management

Process and Product

Quality Assurance

Measurement and Analysis

Supplier Agreement

Management

Project Monitoring and

Control

Project Planning

Requirements Management

Organizational Status

Process Area

Project D

(Class D)

Organization I

(Mostly A,B,C, some D)

Organization J

(Class C,D,E)

Organization K

(Class D,E)

LaRC Projects or

Organizations

Organization F

(Class A,B,C,D,E)

Organization H

(Class D,E)

Project C

(Class C,D)

Organization B

(Class C,D,E)

Project A

(Class C)

Organization E

(Class D,E)

Project G

(Class B)

Project D

(Class D)

Organization I

(Mostly A,B,C, some D)

Organization J

(Class C,D,E)

Organization K

(Class D,E)

LaRC Projects or

Organizations

Organization F

(Class A,B,C,D,E)

Organization H

(Class D,E)

Project C

(Class C,D)

Organization B

(Class C,D,E)

Project A

(Class C)

Organization E

(Class D,E)

Project G

(Class B)

National Aeronautics and Space Administration

DOCUMENT REVISIONS

Reports of errors or omissions are submitted according to this Configuration Management Plan.

	Issue Date
	Description of Revision
(Include reason for change if not self-evident.)
	Section Affected
	Prepared
By
	Approved By

	
	Initial Version
	ALL
	MMM
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

Table of Contents
61. Introduction

61.1 Scope

71.1.1 Perspective

71.1.2 Mental Model of Process

71.1.2.1 Mental Model of Project Scope Measures

81.1.2.2 Mental Model of Project Schedule Measures

91.1.2.3 Mental Model of Project Cost/Effort Measures

101.1.2.4 Mental Model of Project Quality Measures

121.1.2.5 Mental Model of Project Functionality Measures

121.1.2.6 Mental Model of Software Product Characteristic Data

141.2 Document Organization

141.3 References

141.4 Acronyms

152. Goals and Questions

152.1 Business Goals

152.1.1 Improve Cost/Effort Estimation and Tracking (BG1)

162.1.1.1 Reduce variance between actual and estimated cost/effort (BG1-1)

162.1.2 Reduce Software Cost (BG2)

162.1.2.1 Limit requirements volatility (BG2-3)

162.1.2.2 Related Goals

172.1.3 Improve Schedule Predictability (BG6)

172.1.3.1 Reduce variance between actual and planned schedule (BG6-1)

172.1.4 Achieve Customer’s Perception of Mission Success (BG7)

172.1.4.1 Meet customer expectations on cost (BG7-1)

172.1.4.2 Meet customer expectations on quality (BG7-2)

172.1.4.3 Meet customer expectations on timeliness (BG7-3)

172.1.4.4 Meet customer expectations on functionality (BG7-4)

172.1.5 Characterize and Improve Software Quality (BG8)

182.1.6 Advance software engineering practices to effectively meet the scientific and technological objectives of NASA (BG13)

182.1.6.1 Comply with NASA Standards and NPRs (BG13-1)

182.1.6.2 Improve software processes (BG13-2)

182.1.6.3 Improve Understanding of Software Profile (BG13-3)

182.1.6.4 Related Goals

182.2 Questions

182.2.1 Software Profile Questions

192.2.2 Customer Questions

192.2.2.1 Baseline Questions

192.2.2.2 Trend Questions

192.2.2.3 Commentary Questions

192.2.2.4 Comparison to Programmatic Success

202.2.3 Software Cost Questions

202.2.3.1 Baseline Questions

202.2.3.2 Performance Questions

202.2.4 Software Effort Questions

202.2.4.1 Baseline Questions

202.2.4.2 Performance Questions

202.2.5 Software Scope Questions

202.2.5.1 Baseline Questions

202.2.5.2 Trend Questions

212.2.6 Software Schedule Questions

212.2.6.1 Baseline Questions

212.2.6.2 Performance Questions

212.2.7 Software Plan Questions

212.2.8 Software Quality Questions

212.2.8.1 Baseline Questions

212.2.8.2 Performance Question

212.2.9 Software Project Failure Questions

212.2.10 Software Engineering Questions

212.2.10.1 Questions on Compliance with NASA Standards and NPRs

222.2.10.2 Questions on Software Process Improvement

222.2.10.3 Process Improvement Suggestions and Lessons Learned

223. Indicators and Other Data Products

223.1 Customer Satisfaction Indicators

223.1.1 Customer Satisfaction on Price, Per Year (I1)

243.1.2 Customer Satisfaction on Quality, Per Year (I2)

253.1.3 Customer Satisfaction on Project Timeliness, Per Year (I3)

263.1.4 Customer Satisfaction on Product Functionality, Per Year (I4)

273.1.5 Customer Comments (I5)

283.2 Cost Indicators

283.2.1 Cost Variance of Accepted Projects Per Year (I6)

303.2.2 Effort Variance of Accepted Projects per Year (I7)

313.2.3 Cost Variance of Open Projects Per Year (I8)

333.2.4 Effort Variance of Open Projects Per Year (I9)

343.2.5 Cost of Software Maintenance Per Year (I23)

353.2.6 Effort for Software Maintenance Per Year (I23)

373.3 Schedule Indicators

373.3.1 Schedule Variance of Accepted Projects Per Year (I10)

383.3.2 Schedule Growth of Open Development Projects Per Year (I10)

403.4 Scope Indicators

403.4.1 Requirements Growth of Accepted Projects Per Year (I11)

413.4.2 Requirements Volatility of Accepted Projects Per Year (I12)

433.4.3 Delivered Functionality of Accepted Projects Per Year (I13)

443.5 Software Quality Indicators

443.5.1 Defect Density Six Months Post Delivery Per Year (I14)

463.5.2 Defect Density of Products in Maintenance (I15)

473.5.3 Defect Escape of Delivered Software (I16)

483.5.4 Defect Resolution of Delivered Software (I17)

493.6 Software Process Improvement Indicators

493.6.1 Percentage of Self-Reporting Projects (I18)

503.6.2 CMMI Appraisal Status (I19)

513.6.3 Suggestions and Lessons Learned (I20)

523.7 Other Indicators and Information Products

523.7.1 Most Important Constraint for Accepted Projects (I21)

533.7.2 Canceled Projects per Year (I22)

543.7.3 NASA Software Inventory

544. Measures

54Appendix A Measurement Requirements for Class E Software

55Appendix B LaRC Business Goals Not Used

55B.1 Improve Cost/Effort Estimation and Tracking (BG1)

55B.1.1 Understand project characteristics that affect cost/effort (BG1-2)

55B.1.2 Effectively track and manage cost/effort (BG1-3)

55B.1.3 Improve traceability of requirements to budget (BG1-4)

55B.1.4 Improve resource estimates (BG1-5)

55B.1.5 Base management reserve on cost estimation uncertainty (BG1-6)

55B.1.6 Match project reserves with project constraints and risks (BG1-7)

55B.1.7 Improve price stability (BG1-8)

56B.2 Reduce Software Cost (BG2)

56B.2.1 Increase software development productivity (BG2-1)

56B.2.2 Increase reuse of software (BG2-2)

56B.2.3 Reduce Rework Cost (BG2-4)

56B.3 Improve Understanding of Our Financial Picture (BG3)

56B.3.1 Improve understanding of how the project budget fits into the overall center’s budget (BG3-1)

56B.3.2 Related Goals

56B.4 Increase Center Revenue (BG4)

57B.4.1 Grow an inventory of strategic software technologies (BG4-1)

57B.4.2 Improve understanding of the customer’s software requirements and challenges (BG4-2)

57B.4.3 Use lessons-learned to increase our ability to win in the bid & proposal process (BG4-3)

57B.4.4 Related Goals

57B.5 Improve Workforce Resource Management (BG5)

58B.5.1 Align workforce with center priorities (BG5-1)

58B.5.2 Anticipate skill mix changes (BG5-2)

58B.5.3 Strengthen needed skills (BG5-3)

58B.5.4 Attract and Retain Top Quality Software Engineers (BG5-4)

58B.6 Improve Schedule Predictability (BG6)

58B.6.1 Understand project characteristics that affect duration estimates (BG6-2)

58B.6.2 Base management reserve on duration estimation uncertainty (BG6-3)

58B.6.3 Improve schedule planning (BG6-4)

58B.6.4 Improve schedule tracking (BG6-5)

59B.7 Achieve Customer’s Perception of Mission Success (BG7)

59B.7.1 Align center priorities with customer expectations (BG7-5)

59B.8 Improve Software Safety (BG9)

59B.9 Improve Software Reliability (BG10)

59B.10 Increase Value Added at the Front End of the Mission (BG12)

59B.11 Become the Best Technology Solutions Integrators (BG14)

59B.11.1 Increase software integration and migration skills (BG14-1)

60B.12 Increase World-Wide Respect for U.S. Technology (BG15)

60B.13 Close Technology Gaps (BG16)

60B.14 Repeat “Gee Whiz” Factor (BG17)

60B.15 Improve Internal Research and Development (BG18)

60B.16 Increase capital improvement (BG19)

60B.17 Grow Research and Development/Reinvest in Research (BG20)

61B.17.1 Improve the integration of software activities to develop strategic software solutions (BG20-1)

61B.17.2 Increase participation in NASA’s software research (BG20-2)

61B.18 Recapitalize Our Infrastructure (BG21)

1. Introduction
This document defines the Center-level measurement program for software projects at NASA Langley Research Center (LaRC). NPR 7150.2 Software Engineering Requirements [‎1] mandates that each Center institute a measurement program for software projects
. This document describes goals and questions as the underlying context and rationale for the indicators that compose the LaRC Software Measurement Program. The Goal-Question-Indicator-Measure (GQIM)
 methodology from the Software Engineering Institute (SEI) [‎2] was used to develop the goals, questions and indicators. The document also adds a Scenario element to the GQIM methodology. Scenarios illustrate the use of the indicator during normal operations. This document uses scenarios to validate the utility of the indicator.
This document draws its measurement goals from a variety of sources that represent the perspective of the Agency, LaRC management, and the LaRC Software Engineering Process Group (SEPG). NPR 7150.2 Software Engineering Requirements [‎1] and the NASA Software Engineering Initiative Implementation Plan [‎3] represent the business goals from the Agency perspective. The meeting minutes of the Langley Research Center (LaRC) Strategy Implementation Retreat held February 13-15, 2006 [‎4] and the LaRC All-Hands Meeting 10/19/2005 [‎5] represent the perspective of LaRC management. The Center Plan for LaRC Software Process Improvement [‎6] represents the perspective of the SEPG.
This document is not intended to aid software projects with compliance to NPR 7150.2 measurement requirements. The document defines the measurement program at the Center-level, not the project level. LMS-CP-5528 [‎7] provides requirements and guidance for project measurement planning. However, software projects shall contribute the measures defined in this document.
1.1 Scope

The LaRC software measurement program applies to all LaRC software efforts in classes A through E as defined in LMS-CP-5528 [‎7]. The plan divides projects into two groups distinguished by NPR 7150.2 software classes: all requirements apply to software in classes A, B, C, and D; and only a subset of the requirements apply to class E. ‎Appendix A lists the requirements that apply to class E. The LaRC Software Engineering Project Group (SEPG) shall administer the LaRC measurement program for software.
Many of the Center’s business goals apply broadly to all projects, not just software. This document decomposes the goals into indicators from the standpoint of software projects. Some indicators will be unique to software projects. Others will be generic to any project. The latter would likely duplicate Center or Agency measurement program efforts aimed at projects in general. Therefore, coordination with the Systems Management Office was sought during the construction of this document. In some cases, the coordination will reduce indicators that this document defines because there exists no specific need to have a segregated software view of some indicators and responsibility for those indicators will belong to a broader organization like the CPMC.

The GQIM method can lead to a plethora of possible indicators and measures. However, an organization cannot pursue all possible indicators. Work would slow to a crawl. The possible indicators are prioritized and their value is measured against the cost of producing the indicator. Priority and cost are used to select a manageable set of indicators.

This document only lists the goals and questions that map to the indicators defined in section ‎3. The source documents may contain many other goals. The goals described in this document may lead to many other questions. Additional goals and questions were considered when formulating the indicators for LaRC’s measurement program. However, they were excluded from this document to maintain brevity and clarity.

1.1.1 Perspective

In GQIM, the perspective of the information consumer is one factor that shapes the indicators. Though the SEPG is not the only consumer of the data, it is the organization collecting and analyzing the measures. The SEPG perspective, therefore, has a dominant influence on what indictors are defined.
1.1.2 Mental Model of Process

GQIM uses the mental model of the process(es) being measured as a context for developing the indicators. The LaRC Software Measurement Program limits its mental model to software projects. The SEPG’s ability to establish uniformity in project processes is limited. Projects have broad freedom to define the engineering processes that they use to produce products. Thus, the Center indicators in this document largely view projects as “black boxes”. Few indicators provide an internal view of project performance and these are limited to the areas were Center procedures mandate specific practices. The projects are expected to establish internal measures of project performance for their own use as required by LMS-CP-5528.
NPR 7150.2 and Langley’s Center Procedures impose different levels of software engineering rigor on software projects based upon the software class. NPR 7150.2 divides these software engineering levels into seven classifications, A through H. This document targets the classifications for engineering software, A through E. From Class E to Class A, the software engineering process becomes more mature at using measures to manage the project. Thus, the number and quality of measures available from Class E software is less than the measures from Class A software. Thus, the mental model of measurement output differs for each classification. The differences in measurement maturity affect the potential Center-level measures and indicators. Some measures and indicators may only look at subpopulations of software projects defined by class, e.g. an indicator related to project cost may include only projects whose software class is A, B, or C. The remainder of this section describes the mental model for the NPR 7150.2 classes related to scope (including requirements volatility), schedule, cost/effort, quality, functionality, and software characteristics. These mental models represent a conservative assessment of the bare minimum process that the Agency and Center procedures impose on projects; projects should not view these mental models as guidance on implementing Agency and Center procedures.
1.1.2.1 Mental Model of Project Scope Measures

Documentation of the project’s needs, objectives, concept of operations, and requirements captures the scope of the project. Requirements-related measures assist the project in monitoring and managing its scope. Common requirements measures are the number of requirements, number of new, modified, and deleted requirements over time, and the number of unresolved requirements (e.g. “To Be Resolved” [TBR], “To Be Determined” [TBD]). NPR 7150.2 and LMS-CP-5528 define minimum standards for requirements development and management. Those standards that affect scope measurement are:
· NPR 7150.2 requires all classes to document their requirements [SWE-049].
· NPR 7150.2 requires classes A through D to collect and manage changes to the software requirements [SWE-053]. Class E must partially implement the requirement and LMS-CP-5528 defines that partial implementation as maintaining revision control of the requirements document??
· NPR 7150.2 requires that the project selects and record software progress tracking measures if the software class is A or B or the software is class C and under contract [SWE-091, SWE-044]. If the software is Class C and not under contract or Class D and under contract, the project must partially implement the NPR 7150.2 requirement for software measures. As part of that partial implementation, LMS-CP-5528 also requires software requirements volatility measures for Class C and contracted Class D software?? NPR 7150.2 provides guidance that a requirements volatility measure can include number of requirements, number of requirement changes, or number of unresolved requirements.
· LMS-CP-5528 requires that classes A through D place requirements documents under configuration control.
At a minimum, Class E projects will have a requirements document with a revision history but Class E is not required to retain previous revisions of the document. Thus, Class E projects can measure the number of requirements as of the current date. Class A through D projects will have a version history of their requirements documents. Thus class A through D can provide the number of requirements over the life of the project. The project can extract the number of requirements changes over the life of the project by comparing the document versions but this analysis is expensive. Recording the number of requirements changes with the release of each new version of the requirements document is the most cost effective means of obtaining the number of requirements changes. However, the governing software procedures do not require that software projects record the number of requirements changes. Thus, the number of requirements is the scope measure that the Center can expect to obtain from all projects with little additional expense.
1.1.2.2 Mental Model of Project Schedule Measures

A project schedule establishes a timeline for project milestones and/or tasks. Projects typically measure actual schedule progress and schedule estimates and plans. Projects commonly use schedule measures to monitor and control their actual schedule progress against the plan. NPR 7150.2 and LMS-CP-5528 establish minimum standards for development and maintenance of project schedules. Those standards that affect schedule measurement are:

· NPR 7150.2 requires that classes A through D have a schedule [SWE-16, SWE-014, SWE-046]. Neither NPR 7150.2 or LMS-CP-5528 require that class E produce a schedule.
· NPR 7150.2 requires that classes A through D track actual performance against plans [SWE-024].

· NPR 7150.2 requires that classes A and B obtain CMMI Capability Level 2 ratings in Project Planning and Project Monitor and Control process areas [SWE-032]. CMMI expects that a project will produce a schedule based on a work breakdown structure, a software development lifecycle, effort estimates, and planned resources. That latter two determine the duration of the project. CMMI also requires that the project assess its performance against its schedule. Class C projects must partially comply with the CMMI requirement. LMS-CP-5528 defines this partial compliance by requiring Class C projects to employ these expected practices (i.e. work breakdown structure, software lifecycle, effort estimation, resource planning, and schedule creation)??
· LMS-CP-5529 requires that the project plan (which includes the baseline schedule) be placed under configuration control for classes A through D.

· NPR 7150.2 requires that Class A, Class B, and Contracted Class C projects select and record software progress tracking measures [SWE-091, SWE-044]. Other Class C projects and contracted class D projects must partially implement the NPR 7150.2 requirement for software measures. As part of that partial implementation, LMS-CP-5528 also requires software progress tracking measures for Class C and contracted class D?? NPR 7150.2 guidance on software progress tracking measures includes “Software development schedule tasks (e.g., milestones) (planned vs. actual)”. However, the project can meet the NPR requirement without a schedule-based measure.
Agency and Center standards allow Class E projects to operate without a schedule. The only schedule-based measures that Class E projects can readily provide are actual start and completion date.

Class D projects are required to produce a schedule and LMS requires tracking progress against that schedule (e.g., expected delivery date)?? At a minimum, the class D schedule must be a set of milestones with dates. Thus, the common schedule measures for class D projects are actual start date, estimated completion date, actual completion date, number of milestones, number of milestones completed (planned), and number of milestones completed (actual). In this mental model, a project starts with formulation. Thus, the actual start date of the project will always precede the establishment of its schedule, and there is no “planned” start date for a project. Class D projects can also provide the number of re-plans by counting the number of plan revisions. Each re-plan may or may not include changes to schedule; re-plans may be due to changes in budget, personnel, etc. However, because the plan is configuration controlled, the project can report schedule growth for each re-plan by comparing the completion date of the current plan with that of the previous.
Class C projects are required to produce a schedule based on a work breakdown structure, a software development lifecycle, effort estimates, and planned resources?? The schedule contains a mixture of tasks and milestones. Thus, Class C projects can readily produce the same measures as Class D projects plus the number of tasks, the number of tasks completed (planned), and the number of tasks completed (actual). The schedules for Class A and B projects have similar minimum characteristics to the schedule for a Class C project.
1.1.2.3 Mental Model of Project Cost/Effort Measures

A software project uses cost/effort measures to establish the budget for the project and to track project expenditure against the budget. Since software projects are labor intensive efforts, effort is an important component of software project cost and can be used as a proxy for dollar cost. Effort is also an inflation-neutral measure of cost; thus many software “cost” models actually produce an estimation of the effort. The project converts effort into a dollar cost using the organization’s model of labor cost. NPR 7150.2 and LMS-CP-5528 establish minimum standards for development and maintenance of project budgets. Those standards that affect cost/effort measurement are:

· NPR 7150.2 requires creation and maintenance of a cost estimate for software classes A through E [SWE-15]. However, the NPR allows centers to define partial compliance with the cost estimate requirement for classes D and E. LMS-CP-5528 defines this partial compliance by requiring D and E to produce only an effort estimate?? Class D must maintain the estimate, class E does not??
· NPR 7150.2 requires that classes A through D track progress against their plans [SWE-24]. However, the NPR allows centers to define partial compliance to the requirement for class D. For cost tracking, LMS-CP-5528 defines this partial compliance as tracking project effort, but not cost??
· NPR 7150.2 requires that classes A and B obtain CMMI Capability Level 2 ratings in Project Planning and Project Monitor and Control process areas [SWE-032]. CMMI expects project to estimate the effort and cost of work products and tasks and to develop a budget for the project. CMMI also expects project to track project planning parameters. CMMI also requires that projects assess their performance on cost and effort against the plan. Class C projects must partially comply with the CMMI requirement. LMS-CP-5528 defines this partial compliance by requiring Class C projects to employ these expected practices and requirements (i.e. estimate cost and effort, establish a budget, and track effort and cost progress against the plan)??
· LMS-CP-5529 requires that the project plan (which includes the baseline budget) be placed under configuration control for classes A through D.

· NPR 7150.2 requires that Class A, Class B, and Contracted Class C projects select and record software progress tracking measures [SWE-091, SWE-044]. Other Class C and contracted class D projects must partially implement the NPR 7150.2 requirement for software measures. As part of that partial implementation, LMS-CP-5528 also requires software progress tracking measures for Class C and contracted class D?? NPR 7150.2 guidance on software progress tracking measures includes “Software resources such as budget and effort (planned vs. actual).” However, the project can meet the NPR requirement without a budget-based measure.

Class E projects are required to produce a planned effort for the project?? However, Class E projects do not have to track against that planned effort; therefore, they are not required to determine the actual effort expended on the project.

Class D projects are required to track their effort. Therefore, these projects can produce planned effort (to date), planned effort (of project), actual effort (to date) and actual effort (of project). Class D projects can also provide the number of re-plans by counting the number of plan revisions. Each re-plan may or may not include changes to planned effort; re-plans may be due to changes in schedule, personnel, etc. However, because the plan is configuration controlled, the project can report effort growth for each re-plan by comparing the planned effort of the current plan with that of the previous.
Classes A, B, and C are required to estimate and track cost in addition to effort. Thus, these projects can readily produce planned cost (of project), planned cost (to date), actual cost (to date), and actual cost (of project). These projects can also produce the effort data of a Class D project. Class A, B, and C projects can also provide the cost growth for each re-plan by comparing the budget of the current plan with that of the previous.
1.1.2.4 Mental Model of Project Quality Measures
Projects primarily use quality measures to quantify the “correctness” of the software product, i.e. the ability and likelihood that the software product(s) will execute its functions correctly. Projects frequently use the measure to assess progress and effectiveness of verification and validation activities. The number of reported defects is a common quality measure. Though the number of requirements verified (planned or actual) can be a quality measure, the Center measurement program will use this data as a functionality measure and it will be addressed in the next section. This section will focus on defect measures. NPR 7150.2 and LMS-CP-5528 establish minimum standards for verification and validation activities. Those standards that affect defect measurement are:
· NPR 7150.2 requires that Class A through C document defects [SWE-69]. For class D, SWE-69 is marked ‘P(Center)’ and LMS-CP-5528 requires that class D document its defects??
· NPR 7150.2 requires that Class A and B projects conduct peer reviews of Software Requirements, Software Test Plans, and software design and code items designated by the project [SWE-87]. Class C projects must partially implement the requirement and LMS-CP-5528 requires that Class C projects perform peer reviews of Software Requirements??

· NPR 7150.2 requires that Class A document the time expended on peer reviews, inspection type, inspection results, number and expertise of reviewers, and the number and classification of defects found by the peer review [SWE-119]. NPR 7150.2 requires that Class A and B record basic measurements for peer reviews [SWE-089]. LMS-CP-5528 requires that the basic measurement include the number of defects found by the peer review??
· NPR 7150.2 requires that Class A collect and analyze problem reports after delivery [SWE-105]. LMS-CP-5528 requires that Class A through D collect problem reports for six months after delivery or until the maintenance phase of the project concludes, whichever is longer.

· NPR 7150.2 requires that Class A, Class B, and Contracted Class C projects select and record software progress tracking measures [SWE-091, SWE-044]. Other Class C projects and contracted Class D projects must partially implement the NPR 7150.2 requirement for software measures. NPR 7150.2 provides guidance on software quality measures. Guidance on quality measures include: a. Number of software Problem Reports/Change Requests (new, open, closed, severity), b. Review of item discrepancies (open, closed, and withdrawn), c. Number of peer reviews/software inspections (planned vs. actual), d. Peer review information (e.g., effort, review rate, defect data), e. Number of software audits (planned vs. actual), f. Software audit findings information (e.g., number and classification of findings), g. Software risks and mitigations, and h. Number of requirements verified or status of requirements validation.

· NPR 7150.2 requires class A through C to produce test plans, test procedures, and test reports [SWE-65]. Class D must partially implement the requirement and LMS-CP-5528 defines the partial implementation to require the creation of a test plan and test report?? Thus, Class A through D should be able to report the number of tests planned.
· NPR 7150.2 requires classes A through D to document test results [SWE-068]. Thus class A through D should be able to report the number of tests completed at project close.
· NPR 7150.2 requires Class A and B schedule tests [SWE-104]. Software Classes C and D must partially implement the test planning requirement. LMS-CP-5528 requires that Class C also schedule tests but not class D?? NPR 7150.2 requires that class A through C projects track progress against plans [SWE-24]. Thus Class A through C projects should be able to report planned tests (to date) and completed tests (to date)??
Class E projects are not required to capture defect measures or any of the data in the NPR 7150.2 guidance on quality measures. Therefore, the Center cannot expect to capture information about the quality of Class E projects without adding requirements to LMS-CP-5528.

Projects in classes A through D are required to capture defects during test and after delivery?? Thus, these projects can provide the number of defects found in test and the number of defects discovered after delivery. They can also report the number of defects that have been corrected??
Projects in Classes A through D are required to plan their tests?? Thus, these projects can report on the total number of tests planned?? Classes A through C are required to schedule tests and can report number of tests planned (to date). Classes A through C are required to track progress against plans; therefore, they can also report number of tests completed (to date)?? Classes A through D are required to document test results and can therefore report the number of tests completed at project close.
Projects in classes A through C are required to perform peer reviews?? These projects can provide the actual number of peer reviews?? However, only classes A and B are required to record data about the review. Class B projects can provide the number of defects uncovered by peer reviews and the results of the peer review?? Class A projects can additionally provide the data specified in SWE-119, e.g. time spent performing the peer review, number and expertise of reviewers, classification of defects discovered, and inspection type.
1.1.2.5 Mental Model of Project Functionality Measures

Project functionality measures quantify the functional characteristics of the software such as the amount of functionality implemented, the processor utilization, or the memory footprint. The Center measurement program will focus on the number of requirements implemented in the software products. The Center measurement program uses this measure to assess project performance against the planned scope from section ‎1.1.2.1 . The Center measurement program will define an “implemented requirement” as a requirement that has been verified and accepted. NPR 7150.2 and LMS-CP-5528 requirements characterize the available data for measuring verified requirements:
· NPR 7150.2 requires that Class A through D maintain traceability between requirements and tests [SWE-072]. Class A and B are required to document a requirements traceability matrix as part of the Software Test Plan [SWE-104]. Class C and D projects must partially implement the Software Test Plan requirement and LMS-CP-5528 requires that these projects produce a requirements traceability matrix??
· NPR 7150.2 requires class A and B document the requirements that were verified as part of the Test Results document [SWE-114]. Class C projects must partially implement this test documentation requirement; LMS-CP-5528 requires that Class C projects document the verification of requirements as part of that partial implementation??
· NPR 7150.2 requires Class A and B schedule tests [SWE-104]. Software Classes C and D must partially implement the test planning requirement. LMS-CP-5528 requires that Class C and D projects schedule tests?? This assists Class Projects in compliance with NPR 7150.2 SWE-067 which requires that Class A through C projects ensure that each implementation of a software requirement is verified to the requirement.
· NPR 7150.2 requires that classes A through D document the evaluation of test results [SWE-068].

· NPR 7150.2 requires that Class A, Class B, and contracted Class C projects select and record software functionality measures [SWE-091.b, SWE-044]. Other Class C projects must partially implement the NPR 7150.2 requirement for software measures. NPR 7150.2 provides guidance on software functionality measures. The suggested measures are a. Number of requirements included in a completed build/release (planned vs. actual), b. Function points (planned vs. actual), c. Computer resource utilization in percentage of capacity.

Class E projects are not required to document verification activities and results. Thus class E projects are not expected to quantify the functionality of their software products.

Class A through D projects are required to trace tests to the software requirements, plan the tests, and document the evaluation of the tests. Thus, Class A through D projects should be able to provide planned and actual data for the number of requirements verified.
1.1.2.6 Mental Model of Software Product Characteristic Data

Software product characteristics encompass a broad range of possible measures and data. Characteristics can be used for a variety of purposes: to divide projects into subpopulations for analysis, to identify correlations between software characteristics and other measures (e.g. cost), and to characterize the portfolio of projects. Some characteristics are inherent in any software endeavor, and some can be used to compare NASA projects with published data for projects outside of NASA. Other characteristics may be inherent to NASA (i.e. applies to all NASA software efforts regardless of class). These inherent characteristics are:

· Project Title. The name of the software effort.
· Software Manager

· Software Manager’s Organization Code. This is the code for the Langley Organization, to which, the software manager is assigned.

· Customer. This is the name of the individual or representative that accepts the software product.

· Project Number(s). This is the Work Breakdown Structure (WBS) number that the Agency has assigned to the project that funds the software effort. The funding project could be one or more management levels above the software effort. This number is the first six digits of the WebTADs charge code that civil servants use for the project.
· Software Size. The size of the software product can be measured in a number of ways. The common size measure for software written in a language is source lines of code (SLOC). For software developed using non-language tools like model-based development, there are few common size measures that allow aggregation of data from multiple projects. One measure is function points, but function points are not commonly used at LaRC. Number of requirements can be used as a size measure, and LaRC projects can provide it. However, a requirement is not an equal unit of measure; therefore, caution is warranted when interpreting indicators that use number of requirements as a size measure. A third size measure is number of elements where an element is an identifiable item created by the developer in the non-language tool. For example, in Mathworks’ Simulink, blocks and signals would be elements. This measure, while it provides near equal units of measure for a given tool, may only give meaningful results when aggregated with data from other projects using the same tool.
· % New Software. The percentage of the software size that represents new construction.

· Primary Language or Modeling Tool. The language or tool that the developer directly uses to produce the software product. The language or tool is “primary” if the majority of effort is expended on products built with the language/tool.
· Secondary Language or Modeling Tool.

· Modeling Language. The notation, if any, used to depict the design of the software.
· Application Domain. The category of intended use for the software.
The majority of the inherent characteristics are assigned attributes, i.e. they are not measured. The project incurs negligible cost to report an assigned attribute. Software Size and % New Software are measured characteristics. They require a standard process for measurement. Unless required by the software engineering process, these measures can be time consuming to collect without automation. Agency and Center requirements do not require computation of software size or % new software as part of the software engineering process. However, the LaRC measurement program assumes that projects producing software using a computing language can provide SLOC count with little effort given the number of free and commercial line counters available. For other software efforts, number of requirements is readily available (see section ‎1.1.2.1); but function points or number of elements is not. Generating the latter two would require moderate to large effort from the projects. For all software projects, generating % new software would require moderate effort.
LaRC projects will share additional characteristics due to commonality of process as defined in Center and Agency requirements. The process-driven characteristics are:

· Software Class. NPR 7150.2 SWE-20 requires that projects classify themselves as one of A through H, based on class definitions in Appendix B of the NPR.

· Safety-Critical Determination. NASA-STD-8739.8, 5.1.2.1 requires that a safety-critical determination is made for software products.

· Software IV&V Determination. The Office of Safety and Mission Assurance (OSMA) identifies projects that will receive IV&V services (see NASA-STD-8739.8).

· CMMI Rating. The project’s appraised rating against the Capability Maturity Model Integration (CMMI). NPR 7150.2 requires CMMI ratings for class A and B projects.
· Milestone Completion Dates. Since Class A and B apply only to spaceflight projects, Class A and B software projects exist within a system that does have a standard set of milestones imposed by NPR 7123.1A Systems Engineering (e.g. System Requirements Review [SRR], Preliminary Design Review [PDR]). Thus, Class A and B projects can provide the completion dates of these common system milestones. Other data, such as actual cost, can be captured at these milestones to model expected performance for future projects. The milestones would also apply to lower classes performed under a spaceflight program.
· Current Project Phase. Additionally Class A and B projects exist within a system that has a standard set of phases defined by NPR 7120.5D (e.g. Phase A, Phase B). Thus, Class A and B projects can provide the current phase of the governing project. These phases would also apply to lower classes performed under a spaceflight program
1.2 Document Organization

This document is divided into the following sections:

Section 1
Explains the purpose of this document, its scope, and its organization. The section also provides references, an acronym list, and a glossary.

Section 2
Describes the business goals, questions, and derived measurement goals for LaRC software projects.

Section 3
Defines each indicator in the context of the questions that it addresses, and the section provides a scenario illustrating the use of each indicator.

Section 4
Defines the measures required to generate the indicators.
Appendix A
Lists the measurement requirements that apply to Class E software projects.
1.3 References

1. “NASA Software Engineering Requirements.” NASA, Washington, D.C., NPR 7150.2, September 27th, 2004.

2. Park, Robert E.; Goethert, Wolfhart B.; and Florac, William A. “Goal-Driven Software Measurement – A Guidebook.” Software Engineering Institute, Pittsburgh, PA, Handbook CMU/SEI-96-HB-002, August 1996.
3. NASA/OCE, “NASA Software Engineering Initiative Implementation Plan”, Release 1.0, January 11, 2002.

4. “Minutes - Line and Project Leaders Strategy Implementation Retreat”, NASA Langley Research Center, Hampton, VA, February 13-15, 2006.
5. Roe, L. B. “NASA Langley Research Center All Hands Meeting”, NASA Langley Research Center, Hampton, VA, October, 19. 2005.
6. Schuler, P. “Center Plan for LaRC Software Process Improvement”, NASA Langley Research Center, Hampton, VA, November 2004.

7. LMS-CP-5528 Software Engineering

8. “Software Assurance Standard.” NASA, Washington, D.C., NASA-STD-8739.8 w/ Change 1, July 28, 2004.

1.4 Acronyms

CP
Center Procedure

COTR
Contracting Officer Technical Representative

LaRC
Langley Research Center

LMS
Langley Management System

NPR
NASA Procedural Requirements

NASA
National Aeronautics and Space Administration

OCE Office of Chief Engineer

2. Goals and Questions
2.1 Business Goals

This section describes the business goals that form the basis of LaRC’s measurement program for software. The goals address Center-level needs and the needs of the LaRC Software Engineering Process Group (SEPG). These will differ from the needs of an individual project. But, the measurement program recognizes that the project is the supplier of data and that the project’s primary objective is delivery of a fully functional, quality product within cost and schedule. The project providing the data may not reap equivalent value for the effort it expends in supplying the data. Some measures will provide greater benefit to future projects or to team members through organizational improvements. The measurement program strikes a balance between the organizational value of the measurements and any additional burden they may place on projects. The business goals are important communicators of the value of the measures; the project should know how its measurement efforts add value to the organization even if those efforts do not immediately add value to the project.

The goals that form the basis for the LaRC measurement program come from the following sources: NPR 7150.2 Software Engineering Requirements [‎1], the NASA Software Engineering Initiative Implementation Plan [‎3], the meeting minutes of the Langley Research Center (LaRC) Strategy Implementation Retreat [‎4], the LaRC All-Hands Meeting 10/19/2005 [‎5], and the Center Plan for LaRC Software Process Improvement [‎6]. Some goals were created from “strategies” and “objectives” in these documents. The goals from these sources overlap. This document consolidates the set of goals to reduce redundancy. When a goal derives from multiple sources, the sources and the original goal from those sources is listed for traceability. The business goals are in no particular order.

Some business goals cover a broad spectrum of Center activities. These business goals are decomposed into subgoals with a narrow focus and relevance to software projects. Each business goal is tagged with a identifier of the form BGn[-m] where n is an integer unique to each goal and m is an optional integer used to tag related subgoals. There is overlap among the goals and subgoals. Goals may also be related; for example, one goal may improve the success of a related goal. The overlap and relationships help identify measurement areas of importance.
2.1.1 Improve Cost/Effort Estimation and Tracking (BG1)

This goal would differentiate between: effort and other costs (which include direct costs, award fee, etc.). This historical data will be published under this measurement program for future projects to use to make improved estimates.

Sources:
· NPR 7150.2 Section 4.4
· To improve future planning and cost estimation.
· To provide realistic data for progress tracking.
· NASA Software Engineering Initiative Implementation Plan Section 2
· Improved cost and schedule predictability.

· Langley Research Center (LaRC) Strategy Implementation Retreat

· Improve Understanding of Our Financial Picture

Estimated costs are an important input into strategic decisions about project selection, budgeting, and resource allocation. Estimated costs are also a basis of the project plan and aid evaluation of proposed project changes. A poor estimate can lead to poor decisions or the need to make sacrifices later in the project (e.g. reduce scope, increased schedule, increased cost). In the cost estimation process, the project team quantifies the scope of the project and identifies project characteristics that affect cost. These are input into a cost estimation method to produce an estimate of cost. LaRC may also desire a confidence interval and/or standard deviation for cost estimates on high-profile projects. The project team can combine the statistical data with risk analysis to characterize the uncertainty of the cost estimate. The uncertainty can be a factor that defines the management reserve on the project. Cost estimation also assumes a predictable behavior in cost elements such as labor rates. LaRC should work to ensure that its accounting practices facilitate predictable project costs for its labor and services. Once cost estimates are established, the project must validate those estimates by tracking the actual cost. When actual costs vary significantly from estimates, the project takes action to adjust the estimated cost for the project or negotiates schedule or scope changes to maintain the original budget. Since most software projects are primarily labor intensive efforts, it is necessary to estimate and track effort as part of the cost estimate. In fact, projects can use effort as a proxy for cost if costs for materials or services are a small fraction of the project cost.
2.1.1.1 Reduce variance between actual and estimated cost/effort (BG1-1)

This goal aims to cap and reduce the difference between the cost/effort estimate and the actual cost/effort across LaRC’s portfolio of projects.

2.1.2 Reduce Software Cost (BG2)

Source: NASA Software Engineering Initiative Implementation Plan Section 2

The goal challenges software projects to reduce the cost of developing software. Other goals in this document can result in reduced development cost but are not a replacement for this goal.

2.1.2.1 Limit requirements volatility (BG2-3)
Documentation of the project’s needs, objectives, concept of operations, and requirements captures the scope of the project. Requirements-related measures assist the project in monitoring and managing its scope. Common requirements measures are the number of requirements, number of new, modified, and deleted requirements over time, and the number of unresolved requirements (e.g. “To Be Resolved” [TBR], “To Be Determined” [TBD]). The project’s requirements define the work to be accomplished and, therefore, the cost. When the scope changes and grows, it creates new work and rework that increase cost. Eliminating requirements changes is not a realistic means of reducing costs. Changes are a normal part of projects and are necessary to be responsive to customer needs. But too many changes (e.g. scope creep) can cause costs to spiral out of control. Projects cannot control cost growth without also controlling requirements changes.
2.1.2.2 Related Goals

The following goals from other sections compliment this goal:

· Improve schedule planning (BG6-4)
· Improve schedule tracking (BG6-5)
Cost increases can also arise from poor planning and tracking that leaves the project unexpectedly paying for idle resources.
2.1.3 Improve Schedule Predictability (BG6)

Source: NASA Software Engineering Initiative Implementation Plan
Schedule predictability involves both planning and tracking. Producing good task duration estimates is just one piece of schedule predictability. When they are heavily staffed with matrixed employees who are assigned to the project part-time, it is difficult to track the commitments of so many individuals who have other assignments, some which appear suddenly.
Under this measurement program, historical data will be published for future projects to use to make improved schedule estimates and therefore improve predictability.

2.1.3.1 Reduce variance between actual and planned schedule (BG6-1)

This goal aims to cap and reduce the difference between the planned schedule and actual schedule performance across LaRC’s software efforts.

2.1.4 Achieve Customer’s Perception of Mission Success (BG7)

Source:
· Langley Research Center (LaRC) Strategy Implementation Retreat

· Improve Customer Mission Success

· Center Plan for LaRC Software Process Improvement
· Increase Customer Satisfaction with LaRC Products

This goal attempts to improve the success of projects from the customer’s subjective perspective. The goal seeks to meet customer expectations in price, quality, timeliness and functionality so that the Center becomes a reliable, trusted supplier or partner by delivering on its commitments. LaRC projects must also serve as honest brokers when participating in customer decision making.
2.1.4.1 Meet customer expectations on cost (BG7-1)
This subgoal aims to provide software products at a cost expected by the customer.

2.1.4.2 Meet customer expectations on quality (BG7-2)
This subgoal aims to provide software products with the quality expected by the customer.

2.1.4.3 Meet customer expectations on timeliness (BG7-3)
This subgoal aims to provide software products on the date(s) negotiated with the customer.

2.1.4.4 Meet customer expectations on functionality (BG7-4)

This subgoal aims to provide software products that meet customer requirements and functional expectations.

2.1.5 Characterize and Improve Software Quality (BG8)

Source: Center Plan for LaRC Software Process Improvement and
 NASA Software Engineering Initiative Implementation Plan

Projects primarily use quality measures to quantify the “correctness” of the software product, i.e. the ability and likelihood that the software product(s) will execute its functions correctly. Projects frequently use quality measures to assess progress and effectiveness of verification and validation activities. Quality can encompass many aspects of the software. A low or zero defect count in delivered software is the predominant notion of quality.

2.1.6 Advance software engineering practices to effectively meet the scientific and technological objectives of NASA (BG13)

Source: Center Plan for LaRC Software Process Improvement and
 NASA Software Engineering Initiative Implementation Plan

NASA has embraced improvement of software engineering practices as an effective avenue to achieve mission success with better project performance. The NASA Software Engineering Initiative Plan anticipates that this goal will benefit the following related goals:

· Improve Cost/Effort Estimation and Tracking (BG1)
· Characterize and Improve Software Quality (BG8)
· Reduce Software Cost (BG2)
· Improve Schedule Predictability (BG6)
A cornerstone of this goal is a “continuous software process and product improvement program across NASA and its contract community.”

2.1.6.1 Comply with NASA Standards and NPRs (BG13-1)

NASA standards and NPRs further Agency-level business goals. Projects compliance to NASA standards and procedural requirements is necessary to achieve Agency goals and software safety. CoTR surveys may be used to help determine compliance (e.g., compare projects that submit to the measurement program metrics collection sheet with a complete list of software projects that each CoTRs has under their contract; historically the latter is a much greater number of projects which indicates noncompliance).

2.1.6.2 Improve software processes (BG13-2)

NASA has chosen to advance software processes by achieving CMMI Capability Level 2 ratings for selected process areas (see NPR 7150.2 SWE-032 for a list). LaRC will follow NASA’s direction by using the CMMI model as the basis for improvements. The goal seeks to improve software processes by increasing the number of CMMI ratings at the Center.
2.1.6.3 Improve Understanding of Software Profile (BG13-3)

Characterizing software projects at LaRC is necessary to help identify the root cause of problems and to formulate appropriate corrective actions.
2.1.6.4 Related Goals
This document lists a number of goals that complement. These are:

· Increase Value Added at the Front End of the Mission (BG12)
· Increase World-Wide Respect for U.S. Technology (BG15)
· Repeat “Gee Whiz” Factor (BG17)
· Characterize and Improve Software Quality (BG8)
· Improve Software Safety (BG9)
· Improve Software Reliability (BG10)
2.2 Questions

2.2.1 Software Profile Questions
All questions in subsequent sections refer to the aggregate body of software projects for the Center. Most indicators in section ‎3 show aggregations at the Center level. This section lists qualifiers that, when appended to questions in other sections, narrows their focus to a select subset of software projects. It may become necessary to subdivide data into smaller populations in order to better understand the Center level results. Such “drilling down” can provide necessary information to formulate effective corrective actions. These “drill-down” questions provide rationale for some measures in section ‎1.1.1 REF _Ref145387447 \h
.
Q1-1
per organization (branch or company)? [BG13-3]
Q1-2
per application domain ? [BG13-3]
Q1-3
by planned project duration (< 1 yr, 1 – 2 yrs, 3 – 5 yrs, 5 yrs+)? [BG13-3]
Q1-4
by NPR 7120.5 software class (A-E)? [BG13-3]
Q1-5
by planned cost (< $300K, $300K - $1M, $1M - $4M, $5M - $10M, $10M+)? [BG13-3]
Q1-6 by development organization’s relationship with LaRC? (see section ‎1.1.1.1) [BG13-3]
Q1-7
development vs. maintenance projects? (see section ‎1.1.1.1) [BG13-3]
Q1-8
by product line (Exploration, Space Operations, Aeronautics, Science, Facilities, IT, Education)? [BG13-3] {{not sure about this one}}
Q1-9
by software size? (SLOC count or other count) [BG13-3]
Q1-10
by primary programming language or tool? [BG13-3]
Q1-11
by secondary programming language or tool? [BG13-3]
Q1-12
by safety-criticality? [BG13-3]
Q1-13
by customer organization? [BG13-3]
Q1-14
by planned {peak, mean} team size? [BG13-3]
Q1-15
by organizational process maturity? [BG13-3]
Q1-16
by development phase? [BG13-3]
2.2.2 Customer Questions
2.2.2.1 Baseline Questions

Q2-1
How well do software projects meet customer expectations on price? [BG7-1
]
Q2-2
How well do software projects meet customer expectations on quality? [BG7-2
]
Q2-3
How well do software projects meet customer expectations on timeliness? [BG7-3
]
Q2-4
How well do software projects meet customer expectations on functionality? [BG7-4
]
2.2.2.2 Trend Questions

Q2-5
Is customer satisfaction with the cost of software projects improving? [BG7-1
]
Q2-6
Is customer satisfaction with the quality of software products improving? [BG7-2
]

Q2-7
Is customer satisfaction with the duration of software projects improving? [BG7-3
]

Q2-8
Is customer satisfaction with the functionality of software products improving? [BG7-4
]

2.2.2.3 Commentary Questions

Q2-9
What project actions do customers experience as a hindrance to mission success? [BG7
]

Q2-10
What project actions do customers experience as an aid to mission success? [BG7
]

Q2-11
What changes should projects make to improve mission success for the customer? [BG7
]
2.2.2.4 Comparison to Programmatic Success

These questions examine whether the project’s reported performance on cost, schedule, quality, and functionality correlate with customer perceptions of project success. Poor correlation can indicate poor customer communication or poor customer involvement in defining project success.
Q2-12
Does project reporting of cost performance correlate with customer satisfaction on cost? [BG7-1
]
Q2-13
Does project reporting of quality correlate with customer satisfaction on product quality? [BG7-2
]

Q2-14
Does project reporting of schedule performance correlate with customer satisfaction on project duration? [BG7-3
]

Q2-15
Does project reporting of requirements met correlate with customer satisfaction on software functionality? [BG7-4
]

2.2.3 Software Cost Questions

2.2.3.1 Baseline Questions

Q3-1 How much does LaRC estimate for software projects each fiscal year? [BG1][I8]
Q3-2 How much does LaRC actually spend on software projects each fiscal year? [BG1][I8]
Q3-3 What is the variance between estimated and actual cost of software projects at LaRC? [BG1-1][I6]
Q3-4 What is the typical cost reserve for the Project Start plan? [BG1]
2.2.3.2 Performance Questions

Q3-5 What percentage of estimated cost for software development is expended each fiscal year? [BG1[I8]]
Q3-6 Is the variance between planned and actual cost decreasing? [BG1][I6]
2.2.4 Software Effort Questions

2.2.4.1 Baseline Questions

Q4-1 What is the estimated effort on LaRC software projects plan each fiscal year? [BG1][I9]
Q4-2 What is the actual effort expended on software projects each fiscal year? [BG1][I9]
Q4-3 What is the variance between estimated and actual effort of software projects at LaRC? [BG1-1]

Q4-4 What is the typical effort reserve for the Project Start plan? [BG1]
2.2.4.2 Performance Questions

Q4-5 Is the actual effort above or below the planned effort each fiscal year? [BG1][I9]
Q4-6 Is the variance between planned and actual effort decreasing? [BG1-1]
2.2.5 Software Scope Questions

2.2.5.1 Baseline Questions

Q5-1 What is the typical requirements growth or contraction on software projects? [BG2-3][I11]
Q5-2 What is the typical requirements volatility on software projects? [BG2-3][I12]
Q5-3 What is the typical percentage of requirements verified at delivery? [BG8] [I13]
2.2.5.2 Trend Questions

Q5-4 Is requirements growth/contraction trending to a reasonable level? [BG2-3][I11]
Q5-5 Is requirements volatility trending to a reasonable level? [BG2-3][I12]
Q5-6 Is the percentage of requirements verified at delivery going up? [BG8][I13]
2.2.6 Software Schedule Questions

2.2.6.1 Baseline Questions

Q6-1
What is the typical schedule variance on projects? [BG6-1][I10]
Q6-2
What is the actual duration of software projects at LaRC? [BG6-1]

Q6-3
What is the typical schedule reserve of software projects at LaRC? [BG6-1]

2.2.6.2 Performance Questions

Q6-4
What is the current schedule growth/contraction of active projects? [BG6]
Q6-5
Is the schedule variance of completed projects decreasing? [BG6-1][I10]
2.2.7 Software Plan Questions

Q7-1 How many times does a project re-plan? [BG1, BG6]
Q7-2 What is the most important constraint: budget, schedule, or scope? [BG13-3][I21]
2.2.8 Software Quality Questions

2.2.8.1 Baseline Questions

Q8-1
What is the defect density of delivered LaRC software products per year? [BG8][I15]
Q8-2
What is the defect density of LaRC software products six months after delivery? [BG8][I14]
Q8-3
What percentage of identified defects are resolved? [BG8][I17]
2.2.8.2 Performance Question

Q8-4
What is the percentage of defects that escape qualification test, six months after delivery? [BG8][I16]
Q8-5
Is the yearly defect density of delivered products decreasing? [BG8][I15]
Q8-6
Is the defect density within the first six months of delivery decreasing? [BG8] [I14]
Q8-7
Is the escape rate decreasing over time? [BG8]
Q8-8
Is the percentage of defects resolved increasing? [BG8][I17]
2.2.9 Software Project Failure Questions

Q9-1 What percentage of projects are canceled? [BG7
][I22]
Q9-2 Are the percentage of canceled projects decreasing over time? [BG7
][I22]
2.2.10 Software Engineering Questions

2.2.10.1 Questions on Compliance with NASA Standards and NPRs
Q10-1 What percentage of projects self-submit to the software inventory? [BG13-1][I18]
Q10-2 Is the percentage of projects self-submitting to the software inventory increasing? [BG13-1][I18]
2.2.10.2 Questions on Software Process Improvement
Q10-3
What is the capability level of the software projects in each of the seven maturity level two process areas? [BG13-2][I19]
Q10-4
Is the number of projects achieving maturity levels increasing over time? [BG13-2]
Q10-5
Does the use of technology (e.g. software tools) correlate with project performance? [BG13-2]
Q10-6
Does choice of software methodology (CMMI, Extreme Programming, etc.) affect performance? [BG13-2]
Q10-7
Does software class affect performance? [BG13-2]
Q10-8
Do compliant projects perform better than non-compliant projects? [BG13-2]
2.2.10.3 Process Improvement Suggestions and Lessons Learned

Q10-9
What are the greatest problems or challenges faced by software projects? [BG13-2][I20]
Q10-10
What are the best practices used on projects? [BG13-2][I20]
Q10-11
What improvements to the LMS procedures do projects suggest? [BG13-2] [I20]
3. Indicators and Other Data Products
3.1 Customer Satisfaction Indicators
3.1.1 Customer Satisfaction on Price, Per Year (I1)
[image: image2.emf]Customer Satisfaction on Price

0%

20%

40%

60%

80%

100%

2000 2001 2003 2004 2005 2006

Year

% Responses

Dissatisfied Neutral Satisfied

Goal(s): Meet customer expectations on cost (BG7-1)
Question(s): Q2-1, Q2-5
Objective: Provides a quantitative assessment of customer satisfaction with the actual cost of LaRC software products and display how customer satisfaction changes over time.

Inputs: REF _Ref145469710 \h
Customer Satisfaction with Cost (M3-1) REF _Ref145469730 \h

Algorithm: For each year compute,

· % Disastisfied = R(1,2)/N x 100
· % Neutral = R(3)/N x 100
· % Satisified = R(4,5)/N x 100
where R() is the number of responses received for the values within the parenthesis and N is the total number of responses.
Assumptions:

· For each year, the size of N represents a statistically significant sample

· For each year, N is a large percentage of all projects that ended development or closed that year; i.e., a high percentage of customers responded to the survey
· All projects are of equal importance with respect to customer satisfaction

· Reducing neutral ratings will be easier than reducing dissatisfied ratings. Thus, they are displayed as separate stacks in the column.
Interpretation: The indicator is designed to easily discern the percentage of customers who did not provide a satisfied rating. Neutral and dissatisfied ratings are presented as consecutive stacks from the bottom. In the example chart, it is easy to see that 20% of customers were not satisfied with the price of their software project in the year 2000. The neutral and dissatisfaction ratings are separately shown as an additional indication of how difficult it may be to improve ratings, if one assumes that neutral ratings are easier to reduce than dissatisfaction ratings. The indicator provides ratings data over multiple years. A manager can follow the stack divisions to see whether customer satisfaction with cost is increasing over time.
Management should set minimum targets for customer satisfaction as a trigger for taking corrective action. One trigger could be that the Center should achieve a minimum customer satisfaction rating of 80% on price in any given year. A second trigger could be that the Centers customer satisfaction rating should not drop more than 5% between consecutive years.
Scenario: The example chart above is presented before management in 2003. Management has decided that corrective action must be taken if the customer satisfaction rating is below 80% or the customer satisfaction rating drops more than 5% from the previous year. In 2003, the satisfaction rating dropped below 80%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2003 data has high confidence (e.g. good sample size and response rate). If it does, management would then seek to analyze the root cause. This analysis may include looking at other cost indicators, creating drill-down charts (e.g. customer satisfaction on cost for 2003 by developing organization), reviewing submitted comments by customers, or performing follow-up surveys with customers. Appropriate corrective action is taken once the root cause is found.
3.1.2 Customer Satisfaction on Quality, Per Year (I2)

[image: image3.emf]Customer Satisfaction on Qualtiy

0%

20%

40%

60%

80%

100%

2000 2001 2003 2004 2005 2006

Year

% Responses

Satisfied

Neutral

Dissatisfied

Goal(s): Meet customer expectations on quality (BG7-2)
Question(s): Q2-2, Q2-6
Objective: Provides a quantitative assessment of customer satisfaction with the quality of LaRC software products and display how customer satisfaction changes over time.

Inputs: REF _Ref145491157 \h
 Customer Satisfaction with Quality (M3-2) REF _Ref145469730 \h

Algorithm: For each year compute,

· % Disastisfied = R(1,2)/N x 100

· % Neutral = R(3)/N x 100

· % Satisified = R(4,5)/N x 100

where R() is the number of responses received for the values within the parenthesis and N is the total number of responses.
Assumptions:

· For each year, the size of N represents a statistically significant sample

· For each year, N is a large percentage of all projects that ended development or closed that year; i.e., a high percentage of customers responded to the survey

· All projects are of equal importance with respect to customer satisfaction

· Reducing neutral ratings will be easier than reducing dissatisfied ratings. Thus, they are displayed as separate stacks in the column.

Interpretation: The indicator is designed to easily discern the percentage of customers who did not provide a satisfied rating. Neutral and dissatisfied ratings are presented as consecutive stacks from the bottom. In the example chart, it is easy to see that 15% of customers were not satisfied with the quality of their software project in the year 2000. The neutral and dissatisfaction ratings are separately shown as an additional indication of how difficult it may be to improve ratings, if one assumes that neutral ratings are easier to reduce than dissatisfaction ratings. The indicator provides ratings data over multiple years. A manager can follow the stack divisions to see whether customer satisfaction with quality is increasing over time.

Management should set minimum targets for customer satisfaction as a trigger for taking corrective action. One trigger could be that the Center should achieve a minimum customer satisfaction rating of 85% on quality in any given year. A second trigger could be that the Centers customer satisfaction rating should not drop more than 5% between consecutive years.

Scenario: The example chart above is presented before management in 2003. Management has decided that corrective action must be taken if the customer satisfaction rating is below 85% or the customer satisfaction rating drops more than 5% from the previous year. In 2003, the satisfaction rating dropped below 85%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2003 data has high confidence (e.g. good sample size and response rate). If it does, management would then seek to analyze the root cause. This analysis may include looking at other quality indicators, creating drill-down charts (e.g. customer satisfaction on quality for 2003 by developing organization), reviewing submitted comments by customers, or performing follow-up surveys with customers. Appropriate corrective action is taken once the root cause is found.
3.1.3 Customer Satisfaction on Project Timeliness, Per Year (I3)

[image: image4.emf]Customer Satisfaction with Project Timeliness

0%

20%

40%

60%

80%

100%

2000 2001 2003 2004 2005 2006

Year

% Responses

Satisfied

Neutral

Dissatisfied

Goal(s): Meet customer expectations on timeliness (BG7-3)
Question(s): Q2-3, Q2-7
Objective: Provides a quantitative assessment of customer satisfaction with the duration of LaRC software projects that ended development or closed and displays how customer satisfaction changes over time.

Inputs: REF _Ref145493831 \h
 Customer Satisfaction with Project Duration (M3-3) REF _Ref145469730 \h

Algorithm: For each year compute,

· % Disastisfied = R(1,2)/N x 100

· % Neutral = R(3)/N x 100

· % Satisified = R(4,5)/N x 100

where R() is the number of responses received for the values within the parenthesis and N is the total number of responses.

Assumptions:

· For each year, the size of N represents a statistically significant sample

· For each year, N is a large percentage of all projects that ended development or closed that year; i.e., a high percentage of customers responded to the survey

· All projects are of equal importance with respect to customer satisfaction

· Reducing neutral ratings will be easier than reducing dissatisfied ratings. Thus, they are displayed as separate stacks in the column.

Interpretation: The indicator is designed to easily discern the percentage of customers who did not provide a satisfied rating. Neutral and dissatisfied ratings are presented as consecutive stacks from the bottom. In the example chart, it is easy to see that 35% of customers were not satisfied with the duration of software projects in the year 2000. The neutral and dissatisfaction ratings are separately shown as an additional indication of how difficult it may be to improve ratings, if one assumes that neutral ratings are easier to reduce than dissatisfaction ratings. The indicator provides ratings data over multiple years. A manager can follow the stack divisions to see whether customer satisfaction with timeliness is increasing over time.

Management should set minimum targets for customer satisfaction as a trigger for taking corrective action. One trigger could be that the Center should achieve a minimum customer satisfaction rating of 75% on project duration in any given year. A second trigger could be that the Centers customer satisfaction rating should not drop more than 5% between consecutive years.

Scenario: The example chart above is presented before management in 2005. Management has decided that corrective action must be taken if the customer satisfaction rating is below 75% or the customer satisfaction rating drops more than 5% from the previous year. In 2005, the satisfaction rating dropped ten percent. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2005 data has high confidence (e.g. good sample size and response rate). If it does, management would then seek to analyze the root cause. This analysis may include looking at other project duration indicators, creating drill-down charts (e.g. customer satisfaction on project duration for 2005 by developing organization), reviewing submitted comments by customers, or performing follow-up surveys with customers. Appropriate corrective action is taken once the root cause is found.

3.1.4 Customer Satisfaction on Product Functionality, Per Year (I4)

[image: image5.emf]Customer Satisfaction with Product Functionality

0%

20%

40%

60%

80%

100%

2000 2001 2003 2004 2005 2006

Year

% Responses

Satisfied

Neutral

Dissatisfied

Goal(s): Meet customer expectations on functionality (BG7-4)
Question(s): Q2-4, Q2-8
Objective: Provides a quantitative assessment of customer satisfaction with the functionality of LaRC’s software products and displays how customer satisfaction changes over time.

Inputs: REF _Ref145494634 \h
Customer Satisfaction with Functionality (M3-4) REF _Ref145469730 \h

Algorithm: For each year compute,

· % Disastisfied = R(1,2)/N x 100

· % Neutral = R(3)/N x 100

· % Satisified = R(4,5)/N x 100

where R() is the number of responses received for the values within the parenthesis and N is the total number of responses.

Assumptions:

· For each year, the size of N represents a statistically significant sample

· For each year, N is a large percentage of all projects that ended development or closed that year; i.e., a high percentage of customers responded to the survey

· All projects are of equal importance with respect to customer satisfaction

· Reducing neutral ratings will be easier than reducing dissatisfied ratings. Thus, they are displayed as separate stacks in the column.
Interpretation: The indicator is designed to easily discern the percentage of customers who did not provide a satisfied rating. Neutral and dissatisfied ratings are presented as consecutive stacks from the bottom. In the example chart, it is easy to see that 15% of customers were not satisfied with the duration of software projects in the year 2000. The neutral and dissatisfaction ratings are separately shown as an additional indication of how difficult it may be to improve ratings, if one assumes that neutral ratings are easier to reduce than dissatisfaction ratings. The indicator provides ratings data over multiple years. A manager can follow the stack divisions to see whether customer satisfaction with functionality is increasing over time.

Management should set minimum targets for customer satisfaction as a trigger for taking corrective action. One trigger could be that the Center should achieve a minimum customer satisfaction rating of 85% on product functionality in any given year. A second trigger could be that the Centers customer satisfaction rating should not drop more than 5% between consecutive years.

Scenario: The example chart above is presented before management in 2001. Management has decided that corrective action must be taken if the customer satisfaction rating is below 85% or the customer satisfaction rating drops more than 5% from the previous year. In 2001, the satisfaction rating dropped ten percent to 75%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2001 data has high confidence (e.g. good sample size and response rate). If it does, management would then seek to analyze the root cause. This analysis may include looking at other project duration indicators, creating drill-down charts (e.g. customer satisfaction on project functionality for 2001 by developing organization), reviewing submitted comments by customers, or performing follow-up surveys with customers. Appropriate corrective action is taken once the root cause is found.

3.1.5 Customer Comments (I5)

Content: A complete listing of customer comments submitted during the given fiscal year. Comments are divided into three sections: suggested improvements, actions hindering success, and actions promoting success.
Goal(s): Achieve Customer’s Perception of Mission Success (BG7)
Question(s): Q2-9, Q2-10, Q2-11
Objective: Provide a richer picture on the customer perspective of mission success with narrative suggestions for improvement, detrimental project actions, and project best practices. This is not an indicator in the truest sense of the term. It is a resource for improvement ideas and for analysis when customer satisfaction indicators trigger corrective action.

Inputs: REF _Ref145498238 \h
 Improvement Suggestions from Customers (M3-5), Customer Comments on Actions Hindering Success (M3-6), Customer Comments on Actions Promoting Success (M3-7) REF _Ref145469730 \h

Algorithm: None

Assumptions: None

Interpretation: None

Scenario(s):
· Center Management and Project Management Organizations review customer comments yearly and synthesize a set of lessons learned or improvement initiatives to be employed on future projects.
· Customer Satisfaction on Quality, Per Year (I2) drops below the corrective action trigger of an 85% satisfaction rating for the fiscal year that has just completed. Center management mines the customer comments for project shortcomings that may indicate the root cause of the below-goal satisfaction rating.

3.2 Cost Indicators

3.2.1 Cost Variance of Projects Completing Development Per Year (I6)
[image: image6.emf]Cost Variance of Completed Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Reduce variance between actual and estimated cost/effort (BG1-1)
Question(s): Q3-3, Q3-6
Objective: For LaRC software projects that have completed development (“accepted projects”), provide a quantitative assessment of cost performance and display how cost variance changes over time.

Inputs: Planned Cost {Start Development} (M4-1), Actual Cost {End Development} (M4-3)
Algorithm: For each year compute,

· For each project compute, % Variance = 100 * (Actual Cost/Planned Cost - 1)
· Determine median, low, and high variance values
Plot low, median, and high variance values for each year. Connect all median values with a line.
Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median cost performance of projects. Half of projects perform below than the median. Half perform above the median. The indicator also shows the range of performance among projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If under-spending is of equal concern as over-spending, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of under-spending and over-spending projects).
Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target cost performance are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median cost variance climbs above 20%. In 2008, the median cost variance jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other cost indicators, creating drill-down charts (e.g. cost variance for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.2.2 Effort Variance of Projects Completing Development per Year (I7)
[image: image7.emf]Effort Variance of Completed Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Cost/Effort Estimation and Tracking (BG1), Reduce variance between actual and estimated cost/effort (BG1-1)
· Question(s): Q4-1, Q4-2, Q4-5
Objective: For LaRC software projects that have completed development (“accepted projects”), provide a quantitative assessment of the effort component of project cost and display how effort variance changes over time.

Inputs: Planned Effort {Start Development} (M4-8), Actual Effort {End Development} (M4-10)
Algorithm: For each year compute,

· For each accepted project compute,
% Variance = 100 * (Actual Effort/Planned Effort - 1)

· Determine median, low, and high variance values

Plot low, median, and high variance values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median effort performance of accepted projects. Effort accounts for the majority of cost for most software projects, and it provides an inflation-neutral basis of comparison. Half of projects perform below than the median. Half perform above the median. The indicator also shows the range of performance among accepted projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If labor under-charging is of equal concern as labor over-charging, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of under-charging and over-charging projects).

Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target cost performance and productivity are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median effort variance climbs above 20%. In 2008, the median effort variance jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. effort variance for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.2.3 Cost Variance of Development Projects Per Year (I8)
[image: image8.emf]Cost Variance of Open Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Cost/Effort Estimation and Tracking (BG1), Reduce variance between actual and estimated cost/effort (BG1-1)
Question(s): Q3-1, Q3-2, Q3-5
Objective: For LaRC software projects in development (“development project”), determine the variance of actual cost to planned cost for the fiscal year.

Inputs: Planned Cost {Fiscal Year} (M4-1), Actual Cost {Fiscal Year} (M4-2)
Algorithm: For each year compute,

· For each development project compute, % Variance = 100 * (Actual Cost/Planned Cost - 1)

· Determine median, low, and high variance values

Plot low, median, and high variance values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of development projects represents a statistically significant sample

· The indicator is not weighted. All development projects are treated equally regardless of priority or size.

Interpretation: The indicator shows fiscal year cost performance of all open projects. It differs from indicator “Cost Variance of Completed Projects Per Year (I6)” in two ways. First, it covers only those projects in development that remained open at the end of the fiscal year. Second, the variance is based on the difference between actual cost incurred during the fiscal year and planned cost for the fiscal year. Indicator I6 presents the difference between actual cost at the end of development and planned cost at the start of development.

The indicator also shows the range of performance among projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If under-spending is of equal concern as over-spending, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of under-spending and over-spending projects).
Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target cost performance are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median cost variance climbs above 20%. In 2008, the median cost variance jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. effort variance for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.2.4 Effort Variance of Development Projects Per Year (I9)

[image: image9.emf]Effort Variance of Open Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Cost/Effort Estimation and Tracking (BG1), Reduce variance between actual and estimated cost/effort (BG1-1)
Question(s): Q4-1, Q4-2, Q4-5
Objective: For LaRC software projects in development (“development projects”), determine what percentage of planned workforce is utilized each fiscal year.

Inputs: Planned Effort {Fiscal Year} (M4-8), Actual Effort {Fiscal Year} (M4-9)
Algorithm: For each year compute,

· For each development project compute, % Variance = 100 * (Actual Effort/Planned Effort - 1)

· Determine median, low, and high variance values

Plot low, median, and high variance values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of development projects represents a statistically significant sample

· The indicator is not weighted. All development projects are treated equally regardless of priority or size.

Interpretation: The indicator shows fiscal year labor utilization of all projects in development. It differs from indicator “Effort Variance of Completed Projects per Year (I7)” in two ways. First, it covers only those projects that remained open at the end of the fiscal year. Second, the variance is based on the difference between actual effort incurred during the fiscal year and planned effort for the fiscal year. Indicator I7 presents the difference between actual effort at the end of development and planned effort at the start of development.

The indicator also shows the range of performance among projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If labor under-charging is of equal concern as labor over-charging, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of under-charging and over-charging projects).
Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target cost performance are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median effort variance climbs above 20%. In 2008, the median effort variance jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. effort variance for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.2.5 Cost of Software Maintenance Per Year (I23)

Goal(s): Improve Cost/Effort Estimation and Tracking (BG1)
Question(s): Q3-1, Q3-2, Q3-5
Objective: Compare actual cost of maintenance against plan

Inputs: Planned Cost {Fiscal Year} (M4-1), Actual Cost {Fiscal Year} (M4-2)

Algorithm: For each year compute,

· Total Actual Cost of Maintenance =
[image: image10.wmf]{

}

å

=

n

i

i

Year

Fiscal

Cost

Actual

1

 where n is the number of maintenance projects
· Total Planned Cost of Maintenance =
[image: image11.wmf]{

}

å

=

n

i

i

Year

Fiscal

Cost

Planned

1

 where n is the number of maintenance projects
Display Total Cost of Maintenance and Actual Cost of Maintenance side-by-side in a bar chart for each fiscal year.

Assumptions and Restrictions:

· For each year, the number of maintenance projects represents a statistically significant sample

· The indicator is not weighted. All maintenance projects are treated equally regardless of priority or size.

Interpretation: The indicator shows fiscal year cost of projects in maintenance compared to their planned cost for the year. Maintenance projects are separated from projects in development because projects in development are controlling to a defined scope, schedule, and budget. Thus, computing a variance is a meaningful measure of performance for projects in development. Projects in maintenance perform work on demand in response to change requests and operate on a level of effort. Tracking costs remains important but largely as a tool to schedule change requests within available resources, in accordance with severity or criticality.
This indicator presents the actual cost of software maintenance against the budget set aside for maintenance. By providing the data per year, the indicator also allows visual interpretation of trends in actual and budgeted cost of maintenance. Actual costs that are well above budgeted cost could result from poor estimation, poor quality software that accumulates a backlog of high-severity defects, software that accumulates a large backlog of “critical” enhancements. Overspending is a concern because Center budgets are fixed each fiscal year; maintenance activities may be cannibalizing resources from new development activities or disproportionately consuming management reserves. Overspending can also indicate that software teams are using the maintenance process to make major revisions to software that should be managed as a new development project. Actual costs well below budgeted costs could result from high software quality (a good problem!), poor estimation, or use of maintenance budgets to pay for overruns on new development. The first two causes lead to unspent funding that could have productively been applied to other activities; by the time the surplus funds are apparent, management may have limited options for spending the money that provide lower value for the expenditure. The latter cause could lead to a growing backlog of change requests that may require attention in a future year and require a sudden jump in maintenance funds. In the interim, the utility of the software products to customers may be declining because it is not keeping up with the customers’ changing needs. Note that indicators {{add indictor references}} will identify quality issues or backlogs that may underlie the cost results.
Senior management should determine a target spending thresholds (a high and low threshold) to trigger corrective actions. The chart is also useful in determining whether improvement initiatives that target cost of maintenance are having an effect if the actual cost of maintenance continues to decline for the right reasons.

Scenario: TBD.
3.2.6 Effort for Software Maintenance Per Year (I23)
[image: image12.emf]Effort Variance of Open Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Cost/Effort Estimation and Tracking (BG1)
Question(s): Q3-1, Q3-2, Q3-5
Objective: Compare actual effort for maintenance against plan

Inputs: Planned Effort {Fiscal Year} (M4-1), Actual Effort {Fiscal Year} (M4-2)

Algorithm: For each year compute,

· Total Actual Effort for Maintenance =
[image: image13.wmf]{

}

å

=

n

i

i

Year

Fiscal

Effort

Actual

1

 where n is the number of maintenance projects

· Total Planned Effort for Maintenance =
[image: image14.wmf]{

}

å

=

n

i

i

Year

Fiscal

Effort

Planned

1

 where n is the number of maintenance projects

Display Total Effort for Maintenance and Actual Effort for Maintenance side-by-side in a bar chart for each fiscal year.

Assumptions and Restrictions:

· For each year, the number of maintenance projects represents a statistically significant sample

· The indicator is not weighted. All maintenance projects are treated equally regardless of priority or size.

Interpretation: The indicator shows fiscal year effort expended on software maintenance compared to the planned effort for the year. Maintenance projects are separated from projects in development because projects in development are controlled to a defined scope, schedule, and budget. Thus, computing a variance is a meaningful measure of management performance for projects in development. Projects in maintenance perform work on demand in response to change requests and operate on a level of effort. Tracking costs remains important but largely as a tool to schedule change requests within available resources, in accordance with severity or criticality.

This indicator presents the actual effort for software maintenance against the planned effort. By providing the data per year, the indicator also allows visual interpretation of trends in actual and planned effort for maintenance. Actual effort that is well above plan could result from poor estimation, poor quality software that accumulates a backlog of high-severity defects, or software that accumulates a large backlog of “critical” enhancements. Because Center budgets are fixed each fiscal year, the software development workforce under salary is also largely fixed. Thus unplanned effort could indicate that maintenance activities are cannibalizing resources from new development activities or are disproportionately consuming management reserves. Unplanned effort can also indicate that software teams are using the maintenance process to make major revisions to software that should be managed as a new development project. Actual effort well below plan could result from high software quality (a good problem!), poor estimation, or reassigning maintenance personnel to assits new development projects in trouble. The first two causes can lead to inefficient use of staff that could have been applied productively to long term efforts but may be assigned ad hoc to short term tasks in order to ensure availability to work on maintenance tasks. The latter cause could lead to a growing backlog of change requests that may require attention in a future year and require a sudden jump in maintenance funds. In the interim, the utility of the software products to customers may be declining because it is not keeping up with the customers’ changing needs. Note that indicators {{add indictor references}} will identify quality issues or backlogs that may underlie the cost results.

Senior management should determine a target thresholds (a high and low threshold) of actual effort that trigger corrective actions. The chart is also useful in determining whether improvement initiatives that target cost of maintenance are having an effect if the actual effort for maintenance continues to decline for the right reasons.

Scenario: TBD.
3.3 Schedule Indicators

3.3.1 Schedule Variance of Projects Completing Develoment Per Year (I10)
[image: image15.emf]Schedule Variance of Completed Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Schedule Predictability (BG6), Reduce variance between actual and planned schedule (BG6-1)

Question(s): Q6-1, Q6-5
Objective: For LaRC software projects that complete development (“accepted projects”), provide a quantitative assessment of schedule performance and display how schedule variance changes over time.

Inputs: Actual Start Date (M4-6), Planned End Date {Start Development} (M4-5), Actual End Date (M4-7)
Algorithm: For each year compute,

· For each project compute,

· Planned Duration = Planned End Date {Start Development} – Actual Start Date

· Actual Duration = Actual End Date – Actual Start Date

· % Variance = 100 * (Actual Duration/Planned Duration - 1)

· Determine median, low, and high variance values

Plot low, median, and high variance values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median schedule performance of accepted projects. Half of projects perform below than the median. Half perform above the median. The indicator also shows the range of performance among projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If early completion is of equal concern as late completion, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of early completion and late completion projects).

Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target schedule performance are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median schedule variance climbs above 20%. In 2008, the median schedule variance jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. schedule variance for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found. Corrective action may include changes to LMS software engineering procedures, additional training for new and current software managers, evaluating technology solutions or new methods for current and new projects.
3.3.2 Schedule Growth of Development Projects Per Year (I10)
[image: image16.emf]Schedule Growth of Open Development Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Variance

Goal(s): Improve Schedule Predictability (BG6), Reduce variance between actual and planned schedule (BG6-1)

Question(s): Q6-4
Objective: Provides forward view of the schedule performance of open LaRC software projects in development and display how schedule length changes over time.

Inputs: Actual Start Date (M4-6), Planned End Date {Project Start} (M4-5), Planned End Date {Next Fiscal Year} (M4-5??)
Algorithm: For each year compute,

· For each project compute,

· Initial Duration = Planned End Date {Project Start} – Actual Start Date

· Current Duration = Planned End Date {Next Fiscal Year} – Actual Start Date

· % Growth = 100 * (Current Duration/Initial Duration - 1)

· Determine median, low, and high growth values

Plot low, median, and high growth values for each year. Connect all median values with a line.

Note: The algorithm requires the planned end date as of the end of the reported fiscal year. Plan measures are defined to represent the plan as of the start of a reporting period and are assigned to the fiscal year starting. The plan data at the end of a fiscal year is equal to the plan data at the start of the next fiscal year. Therefore, the algorithm uses the planned end date from the next fiscal year.
Assumptions and Restrictions:

· For each year, the number of projects represents a statistically significant sample

· The indicator is not weighted. All projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median schedule growth of open development projects as of the end of the fiscal year. Maintenance projects are not included because it is assumed that maintenance projects do not work to a planned schedule. Half of projects perform below than the median. Half perform above the median. The indicator also shows the range of performance among projects. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. If early completion is of equal concern as late completion, then the indicator, particularly the median, should be viewed with caution. The indicator does not show the distribution of project performance. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of early completion and late completion projects).

Senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target schedule performance are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median schedule growth climbs above 20%. In 2008, the median schedule growth jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. schedule growth for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.4 Scope Indicators

3.4.1 Requirements Growth of Projects Completing Development Per Year (I11)

[image: image17.emf]Requirements Growth of Completed Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Growth

Goal(s): Limit requirements volatility (BG2-3)

Question(s): Q5-1, Q5-4
Objective: Provides typical requirements growth of LaRC software projects that have completed development (“accepted projects”) and displays how requirements growth changes over time.

Inputs: Number of Requirements {Start Development} (M5-6), Number of Requirements {End Development} (M5-7)
Algorithm: For each year compute,

· For each project compute,

· % Growth = 100 * (Number of Requirements {End Development} / Number of Requirements {Start Development} - 1)

· Determine median, low, and high growth values

Plot low, median, and high growth values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median requirements growth of completed development projects for each fiscal year. Maintenance projects are not included because it is assumed that maintenance projects perform work on demand, triggered by change requests; maintenance projects do not work to implement a requirements document.

By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The indicator does not show the distribution of requirements growth. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of large growth and large contraction).

The chart could be compared against the variance charts for cost/effort and schedule. A correlation between this chart and one or more of the variance charts indicates that requirements growth was a major source of change in cost, effort, or schedule. If senior management is concerned about controlling requirements growth, senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target requirements growth are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median requirements growth climbs above 20%. In 2008, the median requirements growth jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. requirements growth for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.4.2 Requirements Volatility of Projects Completing Development Per Year (I12)

[image: image18.emf]Requirements Volatility of Completed Projects

-40

-20

0

20

40

60

80

2006 2007 2008 2009 2010

Year

% Volatility

Goal(s): Limit requirements volatility (BG2-3)

Question(s): Q5-2, Q5-5
Objective: Provides typical requirements volatility of LaRC software projects that have completed development (“accepted projects”) and displays how requirements volatility changes over time.

Inputs: Number of Requirements {End Development} (M5-7), Number of Requirements Changes {End Development} (M5-8)
Algorithm: For each year compute,

· For each project compute,

· % Volatility = 100 * (Number of Requirements {End Development} / Number of Requirements Changes {End Development} - 1)

· Determine median, low, and high volatility values

Plot low, median, and high volatility values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median requirements volatility of accepted projects for each fiscal year. Maintenance projects are not included because it is assumed that maintenance projects perform work on demand, triggered by change requests; maintenance projects do not work to implement a requirements document. This indicator differs from Requirements Growth of Projects Completing Development Per Year (I11) because it depicts requirements volatility, i.e. the total number of requirements changes including additions, deletions, and modifications. Indicator I11 displays only the gross growth or contraction in the number of requirements. Requirements volatility provides better correlation with cost and schedule variances that are due to requirements changes.
By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The indicator does not show the distribution of requirements volatility. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of large growth and large contraction).

The chart could be compared against the variance charts for cost/effort and schedule. A correlation between this chart and one or more of the variance charts indicates that requirements volatility was a major source of change in cost, effort, or schedule. If senior management is concerned about controlling requirements volatility, senior management should determine a target median and a target range as triggers to launch corrective actions. The chart is also useful in determining whether improvement initiatives that target requirements volatility are having an effect.

Scenario: The example chart above is presented before management in 2008. Management has decided that corrective action must be taken if the median requirements volatility climbs above 20%. In 2008, the median requirements volatility jumped to 26%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. requirements volatility for 2008 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.4.3 Delivered Functionality of Projects Completing Development Per Year (I13)

[image: image19.emf]Delivered Functionality of Completed Projects

60

65

70

75

80

85

90

95

100

2006 2007 2008 2009 2010

Year

% Functionality

Goal(s): Characterize and Improve Software Quality (BG8)

Question(s): Q5-3, Q5-6
Objective: Provides typical delivered functionality of LaRC software projects that have completed development and displays how delivered functionality changes over time.

Inputs: Number of Requirements {End Development} (M5-7), Number of Requirements Verified {End Development} (M5-9)
Algorithm: For each year compute,

· For each project compute,

· % Functionality = 100 * (Number of Requirements Verified {End Development} / Number of Requirements {End Development})

· Determine median, low, and high functionality values

Plot low, median, and high functionality values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of accepted projects represents a statistically significant sample

· The indicator is not weighted. All accepted projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the median delivered functionality of completed development projects for each fiscal year. In this indicator, functionality is defined as the percentage of the final requirements that were verified in the delivered product(s). Maintenance projects are not included because it is assumed that maintenance projects perform work on demand, triggered by change requests; maintenance projects do not work to implement a requirements document.

By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The indicator does not show the distribution of delivered functionality. The median can be low when there are large clusters of projects at both extremes (a dumbbell distribution of large growth and large contraction).

The chart shows whether projects had to sacrifice functionality prior to completion. Projects in which cost or schedule are more important will sacrifice functionality to limit cost or schedule growth. Thus, a complete understanding of project performance requires indicators for cost variance, schedule variance, and delivered functionality. The chart is also useful in determining whether improvement initiatives that increase delivered functionality are having an effect.

Scenario: The example chart above is presented before management in 2007. Management has decided that corrective action must be taken if the median delivered functionality drops below 93%. In 2007, the median requirements volatility dropped to 92%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. delivered functionality for 2007 by organization), examining post-mortem reviews on the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.5 Software Quality Indicators

3.5.1 Defect Density Six Months Post Delivery Per Year (I14)

[image: image20.emf]Post-Delivery Defect Density

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2006 2007 2008 2009 2010

Year

Defects / KLOC

Goal(s): Characterize and Improve Software Quality (BG8)

Question(s): Q8-2, Q8-6
Objective: Shows the density of defects reported within the first six months after delivery of a product.

Inputs: Number of Defects Reported {Post-Delivery} (M6-1), Actual Software Size {Post-Delivery}(M5-1)
Algorithm: For each year compute,

· For each project compute,

· Defect Density = Number of Defects after six months / Size of Software (KSLOC)
· Determine median, low, and high functionality values

Plot low, median, and high functionality values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· Indicator can only include projects that code software in a computing language.

· For each year, the number of projects represents a statistically significant sample

· The distribution of defect densities does not have large populations at both extremes. This could cause the median to be unusually low or unusually high.

· The indicator is not weighted. All projects are treated equally regardless of priority or size
Interpretation: The indicator shows the range and median defect density of software that reached the milestone of six months post-delivery during the fiscal year. Defect density is a commonly used indicator of quality. High post-delivery defect density could indicate inadequate testing or poor engineering. Senior manager should set quality targets and establish thresholds that trigger corrective action.
By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The trends are useful in determining whether improvement initiatives that increase quality are having an effect.

Scenario: The example chart above is presented before management in 2007. Management has decided that corrective action must be taken if the median defect density climbs above 2.0. In 2007, the median defect density reached 2.2. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2007 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. defect density for 2007 by organization), examining defect reports from the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.5.2 Defect Density of Products in Maintenance (I15)

[image: image21.emf]Defect Density of Products in Maintenance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2006 2007 2008 2009 2010

Year

Defects / KLOC

Goal(s): Characterize and Improve Software Quality (BG8)

Question(s): Q8-1, Q8-5
Objective: Shows the density of defects reported for products in maintenance.

Inputs: Number of Defects Reported {Fiscal Year} (M6-2), Actual Software Size {Fiscal Year} (M5-1)
Algorithm: For each year compute,

· For each project compute,

· Defect Density = Number of Defects Reported {Fiscal Year} / Actual Software Size {Fiscal Year}
· Determine median, low, and high functionality values

Plot low, median, and high functionality values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· Indicator can only include projects that code software in a computing language

· For each year, the number of projects represents a statistically significant sample

· The distribution of defect densities does not have large populations at both extremes. The median could then be pushed to either extreme causing false comfort or alarm.

· The median product life does not change suddenly from one year to the next. Defects should decrease with product maturity. A sudden change in the median life of products in maintenance could cause sudden jumps in defect density.

· The indicator is not weighted. All projects are treated equally regardless of priority or size.
Interpretation: The indicator shows the range and median defect density of software that is in the maintenance phase during the fiscal year. Defect density is a commonly used indicator of quality. High post-delivery defect density could indicate inadequate testing or poor engineering from the prior development phase or in the current maintenance phase. Senior managers should set quality targets and establish thresholds that trigger corrective action.

By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The trends are useful in determining whether improvement initiatives that increase quality are having an effect.

Scenario: The example chart above is presented before management in 2007. Management has decided that corrective action must be taken if the median defect density climbs above 2.0. In 2007, the median defect density reached 2.2. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2007 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. defect density for 2007 by organization), examining defect reports from the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.5.3 Defect Escape of Delivered Software (I16)

[image: image22.emf]Defect Escape of Delivered Software

0

10

20

30

40

50

60

2006 2007 2008 2009 2010

Year

% Defects Escaped

Goal(s): Characterize and Improve Software Quality (BG8)

Question(s): Q8-4
Objective: Show the percentage of defects that escape product testing.

Inputs: Number of Defects Reported {Post-Delivery} (M6-3), Number of Defects Reported {End Development} (M6-4)
Algorithm: For each year compute,

· For each project compute,

· % Escape = Number of Defects {Post-Delivery} / (Number of Defects {Post Delivery} + Number of Defects {End Development})
· Determine median, low, and high functionality values

Plot low, median, and high functionality values for each year. Connect all median values with a line.

Assumptions and Restrictions:

· For each year, the number of projects represents a statistically significant sample

· The distribution of defect densities does not have large populations at both extremes. The median could then be pushed to either extreme causing false comfort or alarm.

· The indicator is not weighted. All projects are treated equally regardless of priority or size.

Interpretation: The indicator shows percentage of defects that escape product testing and are uncovered in the field (i.e. after delivery). The escape percentage measures the effectiveness of product testing. Senior managers should set quality targets and establish thresholds that trigger corrective action.

By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The trends are useful in determining whether improvement initiatives that improve testing are having an effect.

Scenario: The example chart above is presented before management in 2007. Management has decided that corrective action must be taken if the escape percentage climbs above 20%. In 2007, the escape percentage reached 25%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2007 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. escape percentage for 2007 by organization), examining test plans and results from the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.

3.5.4 Defect Resolution of Delivered Software (I17)

[image: image23.emf]Defect Resolution of Completed Projects

60

65

70

75

80

85

90

95

100

2006 2007 2008 2009 2010

Year

% Resolved

Goal(s): Characterize and Improve Software Quality (BG8)

Question(s): Q8-3, Q8-8
Objective: Show the percentage of defects that have been resolved during the fiscal year.

Inputs: Number of Defects Open {Past Fiscal Year} (M6-2), Number of Defects Reported {Fiscal Year}, Number of Defects Resolved {Fiscal Year} (M6-5)
Algorithm: For each year compute,

· For each project compute,

· % Resolved = Number of Defects Resolved {Fiscal Year}/ [Number of Defects Open {Past Fiscal Year} + Number of Defects Reported {Fiscal Year}]
· Determine median, low, and high functionality values

Plot low, median, and high functionality values for each year. Connect all median values with a line.

Note that the Number of Defects Open represents the number of defects that remain open at the end of a reporting period. This algorithm requires the number of defects that remain open at the start of the reporting fiscal year; this is equal to the number of defects that remain open at the end of the prior fiscal year.

Assumptions and Restrictions:

· For each year, the number of projects represents a statistically significant sample

· The resolution percentage does not have large populations at both extremes. The median could then be pushed to either extreme causing false comfort or alarm.

· The indicator is not weighted. All projects are treated equally regardless of priority or size.

Interpretation: The indicator shows percentage of defects that have been resolved for products in the operation phase. The defect resolution percentage is a measure of the effectiveness of the maintenance process in resolving defects. Senior management should set a goal target and establish thresholds that trigger corrective action
By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The trends are useful in determining whether improvement initiatives that target maintenance are having an effect.

Scenario: The example chart above is presented before management in 2007. Management has decided that corrective action must be taken if the resolution percentage climbs drops below 93%. In 2007, the resolution percentage dropped to 92%. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2007 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. resolution percentage for 2007 by organization), examining maintenance plans from the projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.6 Software Process Improvement Indicators

3.6.1 Percentage of Self-Reporting Projects (I18)

[image: image24.emf]Self-Reporting Projects

0%

20%

40%

60%

80%

100%

120%

2006 2007 2008 2009 2010

Year

% Self-Reporting

Goal(s): Comply with NASA Standards and NPRs (BG13-1)

Question(s): Q10-1, Q10-2
Objective: Identifies the percentage of new projects that reported to the LaRC Software Metrics Collection web-site in accordance with LMS-CP-5528.

Inputs: Number of New Projects Reporting, Number of New Projects Known
Algorithm: For the current fiscal year compute,

· % Reporting = Number of New Projects Reporting / Number of New Projects Known
Assumptions and Restrictions:

· The total number of new software projects in the fiscal year can be discovered by using information outside of the LaRC Software Metrics Collection web-site. This may include surveying contracts, new technology reports, line management, etc.
Interpretation: The indicator shows the percentage of new projects that submitted project information to the LaRC Software Metrics Collection web-site. Since submission is required by LMS-CP-5528, the submission percentage is used as a barometer of compliance with Center procedures. Senior management should target a high level of compliance and set thresholds for taking corrective action. By providing the data per year, the indicator also allows visual interpretation of trends in the median and range. The trends are useful in determining whether corrective actions that target compliance are having an effect.
Scenario: The above chart is shown in the 2007. Senior management has set a reporting threshold of 70%. In 2007, reporting dipped to 74%. In response, senior management sponsors awareness activities in order to raise compliance. The data in 2008 demonstrates that the awareness activities were effective.

3.6.2 CMMI Appraisal Status (I19)
{{Defer implementation this item}}

[image: image1.png]

Goal(s): Improve software processes (BG13-2)

Question(s): Q10-3
Objective: Identifies active CMMI ratings and gaps in obtaining CMMI ratings.

Inputs: CMMI Capability Profile (M7-1), Software Class (M2-3)
Algorithm: For the current fiscal year compile,

· List of projects required to obtain CMMI ratings

· List of projects reporting one or more CMMI ratings

· Tabulate CMMI rating table:

· List all projects required to have a rating or reporting a rating

· Populate table with active ratings in green

· Mark empty cells as red if project is required to have a rating but does not.

· Mark empty cells as white if project is not required to have a rating.

Assumptions and Restrictions:

· None
Interpretation: The indicator shows the projects or software development organizations at Langley that have obtained CMMI ratings, and it shows gaps for projects/organizations where CMMI ratings are required but not present. LaRC has a goal of eliminating all red cells in the indicator.
Scenario: TBD
3.6.3 Suggestions and Lessons Learned (I20)

Content: A complete listing of project suggestions and lessons learned submitted during the given fiscal year. Responses are divided into three sections: suggested improvements, problems/challenges, and best practices.
Goal(s): Improve software processes (BG13-2)
Question(s): Q10-9, Q10-10, Q10-11
Objective: Provide a richer picture on the project’s perspective of engineering successes and shortfalls. This is not an indicator in the truest sense of the term. It is a resource for improvement ideas and for analysis when project performance exceeds or falls below expectations.

Inputs: LMS Procedure Improvement Suggestion (M7-xx), Greatest Challenge Faced by Project (M7-xx), Project Best Practices (M7-xx).

Algorithm: None

Assumptions: None

Interpretation: None

Scenario(s):

SEPG reviews project comments yearly and synthesizes a set of lessons learned or improvement initiatives to be employed on future projects.
3.7 Other Indicators and Information Products
3.7.1 Most Important Constraint for Projects Completing Development (I21)

[image: image25.emf]Most Important Constraint

Budget

Schedule

Scope

Goal(s): Achieve Customer’s Perception of Mission Success (BG7)

Question(s): Q7-2
Objective: Identifies the percentage of projects that identity budget, schedule, or scope as their most important constraint.

Inputs: Most Important Constraint (M4-xx), Actual End Date (M4-7)
Algorithm: For the past fiscal year compute,

· N = Number of Projects with Actual End Date (M4-7) in the past fiscal year
· % Budget = 100 * N(Most Important Constraint = Budget) / N
· % Schedule = 100 * N(Most Important Constraint = Schedule) / N

· % Scope = 100 * N(Most Important Constraint = Scope) / N

Assumptions and Restrictions:

· None
Interpretation: The indicator shows the percentage of accepted projects that identify budget, schedule or scope as their most important constraint. The indicator aids the interpretation of budget, schedule, and scope performance indicators. For example, the Center should expect indicators showing good budget performance if the majority of projects list budget as their most important constraint. Corrective action should be taken if projects are demonstrating mediocre or poor performance on the constraint with highest importance.
Scenario: The above chart is shown in the current fiscal year, budget and schedule variance indicators are above expectations. However, this is a significant contraction in the requirements growth indicator but it remains at an acceptable level. Senior management decides that the drop in requirements growth is a natural outcome of scope being the least important constraint; senior management decides to take no corrective action against the drop in requirements growth.

3.7.2 Canceled Projects per Year (I22)

[image: image26.emf]Canceled Projects

0%

2%

4%

6%

8%

2006 2007 2008 2009 2010

Year

% Canceled

Goal(s): Improve Understanding of Software Profile (BG13-3)

Question(s): Q9-1, Q9-2
Objective: Identifies the percentage of projects that are canceled each fiscal year.

Inputs: Total Number of Projects {Fiscsal Year}, Number of Projects Canceled {Fiscal Year}
Algorithm: For each fiscal year compute,

· % Canceled = 100 * Number of Projects Canceled / Total Number of Projects

Assumptions and Restrictions:

· For each year, the number of projects represents a statistically significant sample

· The indicator is not weighted. All projects are treated equally regardless of priority or size.

Interpretation: The indicator shows the number of projects canceled as a percentage of the total projects active during the fiscal year. Projects may be canceled for a number of reasons including management failure, technical failure, and strategic or budget realignment. Senior management will desire to keep cancellation rates low in order to bolster the Center’s reputation for project success.
Scenario: The above chart is shown in 2007. Senior management has set a cap of 6% for project cancellations. In 2007, seven percent of projects were cancelled. Management’s corrective action plan is triggered and put into motion. Management first asks for verification that the 2008 data has high confidence (e.g. good sample size). If it does, management would then seek to analyze the root cause. This analysis may include looking at other indicators, creating drill-down charts (e.g. canceled projects for 2007 by organization), examining post-mortem reviews on the cancelled projects, or follow-up interviews with project leads. Appropriate corrective action is taken once the root cause is found.
3.7.3 NASA Software Inventory
Goals: ‎

 REF _Ref188163244 \h
 * MERGEFORMAT Comply with NASA Standards and NPRs (BG13-1)
Question(s): None

Objective: Provide data on Langley software projects for the NASA Software Inventory

Inputs:

· Project Number

· Project Name
· Software Class

· Estimated Software Size
· Actual Software Size

· Estimated Percentage of New Code

· Primary Language

· Secondary Language

· Planned Effort

· Current Project Phase

· Planned Software Requirements Review (SRR) Date

· Planned Preliminary Design Review (PDR) Date

· Planned Critical Design Review (CDR) Date

· Planned End Date

· Modeling Language

· Software Manager

· Software Managers Org Code

Algorithm: None. Analysis performed by Headquarters.

Assumptions and Restrictions: None

Interpretation:

NPR 7150.2 SWE-006 requires NASA to maintain an inventory of its projects containing software. NASA’s Office of the Chief Engineer, in coordination with the Office of Mission and Safety Assurance, defines the content of the software inventory. Langley is required to collect this data yearly and report it to headquarters.
Scenario: None

4. Measures

The Software Measurement Data Dictionary in Appendix B of Software Metrics Database Requirements for Langley Research Center [xx] identifies measures and gives details of the supporting data. Some measures in this document are followed by an adornment in braces {}; adornments are also defined in Appendix B of Software Metrics Database Requirements for Langley Research Center [xx]. The measures to be implemented are a subset of candidate measures that are identified in Annotated List of Candidate Measures.xls.[xx]
Appendix A Measurement Requirements for Class E Software
Appendix B LaRC Business Goals Not Used

This appendix contains a listing of LaRC Business Goals that were captured for the development of measures under GQIM, but were removed from consideration for this version of the LARC measurement program. In some cases, the business goals is being used to develop measures in this revision of the document but one or more of its sub-goals were eliminated. In these instances no text appears below the business goal; the text appears under the goal in section ‎2.1.
B.1 Improve Cost/Effort Estimation and Tracking (BG1)
B.1.1 Understand project characteristics that affect cost/effort (BG1-2)

This goal aims to identify project characteristics that correlate with cost/effort and to quantify the relationship between those characteristics and cost/effort.

B.1.2 Effectively track and manage cost/effort (BG1-3)

Projects achieve continuous tracking of actual vs. planned costs to identify cost growth early in the project. Possible questions: What is the number of times you had to change your baseline cost? What is the average cost growth between baselines?
B.1.3 Improve traceability of requirements to budget (BG1-4)

Software managers can trace the project requirements to the project’s resource and monetary budgets. This ensures that the project’s budgets cover all required development tasks.
B.1.4 Improve resource estimates (BG1-5)

The software manager can reasonably identify the skills, team size, tools, training, supplies, and facilities required to accomplish the mission.
B.1.5 Base management reserve on cost estimation uncertainty (BG1-6)

This goal attempts to quantify the uncertainty of a cost estimate so that management can use that uncertainty to assign the appropriate reserve for that project.
B.1.6 Match project reserves with project constraints and risks (BG1-7)

The Software Manager ensures that the project has sufficient reserves to have a high confidence of success within the project’s constraints (scope, cost, schedule, and quality) and includes a lien against the projects identified risks.
B.1.7 Improve price stability (BG1-8)

This goal aims to suppress any unexpected changes to the cost of developing software products. Of particular concern is the price variability that organizational accounting practices can induce.
B.2 Reduce Software Cost (BG2)

B.2.1 Increase software development productivity (BG2-1)

Source: Center Plan for LaRC Software Process Improvement
LaRC aims to increase the ability of developers to deliver software products at lower cost. To remain successful, software development teams must improve productivity and quality even as software complexity increases. A variety of factors influence a software team’s capability: training, experience/knowledge, software reuse, the software engineering process, and the software development environment (computers and development tools). Software development capability will improve with the improvement of one or more of these factors.
B.2.2 Increase reuse of software (BG2-2)

When it lowers cost, schedule, and/or risk to the software project, the software team must be willing to reuse software rather than re-write or re-create the software.

B.2.3 Reduce Rework Cost (BG2-4)

Rework is modifications to existing designs and software in response to defect reports or requirements changes. The cost of rework grows as the project progresses through the lifecycle. Thus, a project can reduce rework cost either by reducing the amount of rework or through process improvements that causes rework to occur earlier in the lifecycle.
B.3 Improve Understanding of Our Financial Picture (BG3)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC will improve the “ability of senior management, project management, line management, and staff to have an integrated view of the Center’s budget.” LaRC will establish “clear linkage between program/project requirements and budgets.” LaRC will improve the “ability to track budgets (workforce and dollars) and allocate reserves as appropriate to deliver within program/project constraints.” LaRC will increase its understanding of “what it costs & what it takes to do things.”

B.3.1 Improve understanding of how the project budget fits into the overall center’s budget (BG3-1)

Software managers understand how the project’s budget relates to the Center’s budget. Software managers gain a greater sense their project’s financial influence on the line manager’s decisions to allocate resources and senior leadership decisions on setting priorities.

B.3.2 Related Goals

The following goals from other sections compliment this goal:

· Reduce variance between actual and estimated cost/effort (BG1-1)
· Effectively track and manage cost/effort (BG1-3)
· Improve traceability of requirements to budget (BG1-4)
· Improve resource estimates (BG1-5)
B.4 Increase Center Revenue (BG4)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat
The Center’s goal of increasing revenue calls for growth in Exploration development, Space Science, and Systems Analysis while sustaining NASA funding of Aeronautics and increasing reimbursable work in Aeronautics. Proposals are an important mechanism in this quest for revenue growth. More of NASA’s work is transitioning to bid and proposal, and the proposal is key to winning additional work in this competitive environment. To capture other work, LaRC must proactively submit unsolicited proposals for solutions to project requirements and challenges. Though such work is not awarded competitively, the project management team will naturally weigh unsolicited proposals against the expertise, capabilities, and costs of other organizations that the management team has worked with in the past. The quality of LaRC’s proposals will determine how much work the Center receives. For proposals that contain software, funders will scrutinize and compare the following information 1) cost and schedule estimates, 2) the skill mix and experience of the proposed implementation team, and 3) existing, in-house software tools that add value, 4) the Center’s prior successes on similar software projects, 5) a demonstrated understanding of the customer’s software requirements and challenges, and 6) demonstrated capability to perform the work. Winning proposals is also a skill that relies on organizational knowledge of proposal characteristics and actions that would improve their likelihood of success.

B.4.1 Grow an inventory of strategic software technologies (BG4-1)

The Center identifies or creates in-house software technologies that provide value to current and future customers. The Center leverages these technologies in proposals to 1) decrease cost, schedule, and/or risk, 2) improve quality, and 3) demonstrate capability to perform the work.

B.4.2 Improve understanding of the customer’s software requirements and challenges (BG4-2)

To propose a compelling solution, the Center must have a clear understanding of its potential customers’ needs. Proposals that are incomplete or solve the wrong problem could quickly be dropped from consideration.

B.4.3 Use lessons-learned to increase our ability to win in the bid & proposal process (BG4-3)

Source: LaRC All-Hands Meeting 10/19/2005
Successful proposal writing relies on experience; and knowledge of key activities a proposal team should perform; and proposal characteristics that improve the probability that the proposal will be selected. To improve its percentage of proposal wins, LaRC needs to capture and apply lessons learned from past proposal efforts, both within the Center and from other organizations.
B.4.4 Related Goals

The following goals from other sections compliment this goal:

· Achieve Customer’s Perception of Mission Success (BG7)
B.5 Improve Workforce Resource Management (BG5)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat and
LaRC All-Hands Meeting 10/19/2005
Development of a software product requires many skills. No software engineer possesses all of the skills required to develop all software products. Software products encompass a variety of application domains, computing languages, host operating systems, design methodologies, etc. As technology and NASA’s mission evolves, the required skill mix and skill staffing of software projects will change. To meet its future work commitments, the Center needs to manage the skills of its workforce to ensure that sufficient staff is available when needed and that utilization of the entire workforce remains high to reduce the overhead cost of idle staff hours.

B.5.1 Align workforce with center priorities (BG5-1)

Shortfalls in staff with necessary skills will occur, and projects will compete for those skills. The Center aims to ensure that skilled staff are assigned based on the priority given to projects by Center management. Lower priority projects are given correct information to identify and work around periods of skill shortages or the Center moves quickly to fill the skills gap by identifying and transitioning staff that would otherwise be idle.

B.5.2 Anticipate skill mix changes (BG5-2)

In subgoal BG2-1, the Center reacts to skill gaps. In this goal, the Center proactively identifies future skills shortages and surpluses. The Center can then take early steps to rebalance the work force.

B.5.3 Strengthen needed skills (BG5-3)

Continuing education is an important component of maintaining a productive workforce. This goal assures that needed skills stay current with advances in related fields of study. At startup and annually ask the optional question of what software engineering and assurance training classes does the submitter’s staff need. This data will be use by the SEPG in determining yearly software engineering and assurance training needs at LaRC.

B.5.4 Attract and Retain Top Quality Software Engineers (BG5-4)

Source: NASA Software Engineering Initiative Implementation Plan
LaRC aims to attract and retain the best software engineers among its civil service and contractor workforce. Recruiting and retention tools at its disposal include monetary incentives, training opportunities, and challenging work.
B.6 Improve Schedule Predictability (BG6)

B.6.1 Understand project characteristics that affect duration estimates (BG6-2)

This goal aims to identify project characteristics that correlate with project duration and to quantify the relationship between those characteristics and duration.

B.6.2 Base management reserve on duration estimation uncertainty (BG6-3)

This goal attempts to quantify the uncertainty of a duration estimate so that management can use that uncertainty to assign the appropriate schedule reserve for that project.

B.6.3 Improve schedule planning (BG6-4)

Schedule planning requires a number of steps. Projects identify task dependencies in order to map out the network paths for the tasks. Projects resource load the schedule based on assigned resources and the negotiated availability of resources. Project’s negotiate the delivery dates for third part products that feed into the schedule.

B.6.4 Improve schedule tracking (BG6-5)

The project tracks actual schedule performance against the plan to predict future schedule performance and adjust schedules accordingly. Performance elements that may be tracked include task start, task finish, task effort, resource commitments, supplier commitments, and replan data.
B.7 Achieve Customer’s Perception of Mission Success (BG7)

B.7.1 Align center priorities with customer expectations (BG7-5)

The goal “Align workforce with center priorities (BG5-1)” deploys the Center’s resources in alignment with center priorities. In this goal, the Center involves its customers in setting the Center’s priorities. The priorities then become a guide to planning mission success within the collective expectations of the Center’s customers.

B.8 Improve Software Safety (BG9)

Source: Center Plan for LaRC Software Process Improvement and
 NASA Software Engineering Initiative Implementation Plan

LaRC aims to ensure that its software will not cause loss of life, loss of equipment, bodily injury, or equipment damage.

B.9 Improve Software Reliability (BG10)

Source: Center Plan for LaRC Software Process Improvement and
 NASA Software Engineering Initiative Implementation Plan

LaRC aims to increase the reliability of its software. Reliability may encompass software availability, reductions in software failures, and predictability/repeatability of results.

B.10 Increase Value Added at the Front End of the Mission (BG12)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC’s historical role in “rescuing” government and industry projects is evidence of an unmet need. LaRC must become involved early in project formulation to avoid later entry in ‘rescue mode’. LaRC must utilize its intellectual capital and capabilities to improve mission/system requirements and designs. From a software perspective, software engineers need to involve themselves in the formulation of systems that contain software to prevent decisions that unduly increase the cost, risk, and complexity of the software.

B.11 Become the Best Technology Solutions Integrators (BG14)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC aims to provide “our customers with the best solutions, whether or not they were invented here.” LaRC projects will “integrate and validate these solutions to solve customer problems and ensure customer success.” The goal challenges software teams to become experts at integrating software packages from multiple sources and migrating software to different hardware. Software teams must be willing to accept that software integration can be a more cost effective solution than software re-writes.

B.11.1 Increase software integration and migration skills (BG14-1)

LaRC developers must improve their skills and experience at integrating software from different sources and migrating software to different operating environments. Necessary skills include (but are not limited to) integration testing, interlanguage programming, inter-process communication, network communications, distributed computing, and writing portable code.
B.12 Increase World-Wide Respect for U.S. Technology (BG15)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

“[LaRC] stakeholders want to re-gain the respect of the international community with regard to technology. [LaRC] must contribute to this goal by ensuring we provide product leadership in everything we produce.” The goal calls on software teams to develop products whose utility and quality will make them compelling de-facto standards in their problem domain.

B.13 Close Technology Gaps (BG16)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC will endeavor to “solve the largest number of problems for the largest number of projects. [LaRC] will bridge the gap between applied research and operational system development. [LaRC] will understand requirements and challenges for operational systems to establish the context for our research and development.” The goal aims to “provide a high return on our stakeholders investments

B.14 Repeat “Gee Whiz” Factor (BG17)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

“The revitalization of the space program focuses on the nation’s desire for exploration and innovation. [LaRC] must contribute to this revitalization by providing knowledge, technologies and systems to enable the vision for exploration.” This goal encourages software teams to develop creative, exciting, and innovative software products for space exploration.
B.15 Improve Internal Research and Development (BG18)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC must “establish bold, audacious strategic technical goals and challenges. [Research and development] must align with agency mission, goals, objectives, and enduring needs.” From a software perspective, LaRC should increase the number of innovative software products that improve LaRC’s long-term growth; elsewhere in this document, these are called strategic software products. Strategic software products are intended for reuse across LaRC’s portfolio of products to improve mission success.

B.16 Increase capital improvement (BG19)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC must “increase our investment in facilities with a focus on research and development tools to improve and grow capabilities, and reduce operational costs (cost, age, size.)” Software development environments must evolve and upgrade to maintain pace with the increasing complexity of software projects and to simultaneously retard cost and schedule growth. This goal focuses on increased funding for improving facilities. “Error! Reference source not found.” is a complementary goal that emphasizes improved planning for facility upgrades.

B.17 Grow Research and Development/Reinvest in Research (BG20)

Source: Langley Research Center (LaRC) Strategy Implementation Retreat

LaRC “identifies and integrates internally and externally funded research activities [and] influences agency R&T programs to optimize results.” In software, LaRC integrates the efforts of internally and externally funded software teams to create software solutions that are strategic to the Center’s long-term growth. LaRC influences agency research in software technology to add value to its software development projects.

B.17.1 Improve the integration of software activities to develop strategic software solutions (BG20-1)

LaRC identifies opportunities to create innovative software solutions that position the Center for increased growth. To develop strategic software products with limited budget, LaRC integrates the efforts of multiple project teams with common requirements from internal and external funders (i.e. eliminate stove-piping and duplication of effort). LaRC should also foster interoperability among its strategic software products. Such interoperability will increase the value of the products. But, interoperability is best achieved when the software project teams collaborate at the design stage.

B.17.2 Increase participation in NASA’s software research (BG20-2)

NASA does conduct software research. One example is the Software Assurance Research Program (SARP) run by the Office of Safety and Mission Assurance. SARP, in particular, is aimed at increasing the safety and reliability of software developed by NASA. By participating in NASA’s software research programs (particularly in the formulation stage), LaRC can influence NASA’s research to provide greater relevance and value to LaRC’s software projects.
B.18 Recapitalize Our Infrastructure (BG21)

LaRC must “develop a strategically aligned facility master plan and advocate for implementation funding.” Some facilities are software development environments and software plays a prominent role in other facilities. The master plan should identify strategic software facilities and assets. For these facilities and assets, the master plan must incorporate upgrades for developing and operating software including tools, computers, operating systems, and computing languages. This goal emphasizes improved planning for facility upgrades. “Increase capital improvement (BG19)” is a complementary goal that emphasizes increased funding for facility improvements.
� See NPR 7150.2 requirement SWE-094.

� GQ(I)M is an evolution of the Goal-Question-Metric (GQM) methodology created by Basili and Rombach.

LaRC Software Measurement DescriptionV0D14.doc
1
Draft 9/30/2011

_1278836501.unknown

_1278853160.unknown

_1278853170.unknown

_1278836439.unknown

