PeerReviewInspectionChecklistsR2V1.doc

April 1990

SY1 - System Requirements Checklist
CLARITY

1.
Are requirements specified in an implementation free way so as not to obscure the original requirements?

2.
Are implementation and method and technique requirements kept separate from functional requirements?

3.
Are the requirements clear and unambiguous (i.e, are there aspects of the requirements that you do not understand; can they be misinterpreted)?

COMPLETENESS

1.
Are requirements stated as completely as possible? Have all incomplete requirements been captured as TBDs?

2.
Has a feasibility analysis been performed and documented?

3.
Is the impact of not achieving the requirements documented?

4.
Have trade studies been performed and documented?

5.
Have the security issues of hardware, software, operations personnel and procedures been addressed?

6.
Has the impact of the project on users, other systems, and the environment been assessed?

7.
Are the required functions, external interfaces and performance specifications prioritized by need date? Are they prioritized by their significance to the system?

COMPLIANCE

1.
Does this document follow the project's system documentation standards? Does it follow Project's standards? Does the appropriate standard prevail in the event of inconsistencies?

CONSISTENCY

1.
Are the requirements stated consistently without contradicting themselves or the requirements of related systems?

2.
Is the terminology consistent with the user and/or sponsor's terminology?

CORRECTNESS

1.
Are the goals of the system defined?

DATA USAGE

1.
Are "don't care" condition values truly "don't care"? ("Don't care" values identify cases when the value of a condition or flag is irrelevant, even though the value may be important for other cases.) Are "don't care" condition values explicitly stated? (Correct identification of "don't care" values may improve a design's portability.)

FUNCTIONALITY

1.
Are all functions clearly and unambiguously described?

2.
Are all described functions necessary and together sufficient to meet mission and

system objectives?

INTERFACES

1.
Are all external interfaces clearly defined?

2.
Are all internal interfaces clearly defined?

3.
Are all interfaces necessary, together sufficient, and consistent with each other?

MAINTAINABILITY

1.
Have the requirements for system maintainability been specified in a measurable, verifiable manner?

2.
Are requirements written to be as weakly coupled as possible so that rippling effects from changes are minimized?

PERFORMANCE

1.
Are all required performance specifications and the amount of performance degradation that can be tolerated explicitly stated (e.g., consider timing, throughput, memory size, accuracy and precision)?

2.
For each performance requirement defined:

a.
Do rough estimates indicate that they can be met?

b.
Is the impact of failure to meet the requirement defined?

April 1990

SY1 - System Requirements Checklist
RELIABILITY

1.
Are clearly defined, measurable, and verifiable reliability requirements specified?

2.
Are there error detection, reporting, and recovery requirements?

3.
Are undesired events (e.g., single event upset, data loss or scrambling, operator error) considered and their required responses specified?

4.
Have assumptions about the intended sequence of functions been stated? Are these sequences required?

5.
Do these requirements adequately address the survivability after a software or hardware fault of the system from the point of view of hardware, software, operations personnel and procedures?

TESTABILITY

1.
Can the system be tested, demonstrated, inspected or analyzed to show that it satisfies requirements?

2.
Are requirements stated precisely to facilitate specification of system test success criteria and requirements?

TRACEABILITY

1.
Are all functions, structures and constraints traced to mission/system objectives?

2.
Is each requirement stated in such a manner that it can be uniquely referenced in subordinate documents?

April 1990

SU2 - Subsystem Functional Design Checklist

CLARITY

1.
Have the hardware and software environments been described? Have all external systems been included?

2.
Has the high level architecture been described, illustrated and made consistent with the lower level descriptions?

3.
Has the primary purpose for the software been defined?

4.
Has the overall functional design been described?

COMPLETENESS

1.
Have feasibility analyses been performed and documented (e.g., prototyping, simulations, analogies

to current system)?

2.
Have all design and implementation goals and constraints been defined?

3.
Have the capabilities of each component for each stage or phased delivery been identified?

4.
If assumptions have been made due to missing information, have they been documented?

5.
Have all TBD requirements from FRD been analyzed?

6.
Have trade studies been performed and documented?

7.
Have all tradeoffs and decisions been described and justified? Are selection criteria and alternatives included?

8.
Has the subsystem been sized (using lines of code or an alternate method)?

9.
Have initialization, synchronization, and control requirements been described?

COMPLIANCE

1.
Does the documentation follow project standards?
CONSISTENCY

1.
Are the requirements in this document consistent with each other?

2.
Are the requirements consistent with the FRD, external interfaces, and any other related documents?

CORRECTNESS

1.
Does the design seem feasible with respect to cost, schedule, and technology?

2.
Do state diagrams clearly represent the timing?

3.
Have assumptions about intended sequences of functions been stated? Are these sequences required?

4.
Is the design consistent with the actual operating environment (e.g., hardware timing, precision, event sequencing, data rates, bandwidth)?

DATA USAGE

1.
Are data elements named and used consistently?

2.
Has all shared data between subsystems been identified?

3.
Have the means for shared data management been described? Are the subsystems which set and/or

use the shared data indicated?

4.
Has the dataflow among hardware, software, personnel, and procedures been described?

FUNCTIONALITY

1.
Are all described functions necessary and sufficient to meet the mission/system objectives?

2.
Are all inputs to a function necessary and sufficient to perform the required operation?

3.
Are all the outputs produced by a function used by another function or transferred across an external interface?

4.
Do all functions clearly state how the output is derived from input or shared data?

5.
Are all functional states defined?

INTERFACE

1.
Are the internal and external interfaces clearly defined?

2.
Have all interfaces between systems, hardware, software, personnel, and procedures been functionally

described?

3.
Have the requirements for data transfer across each interface been stated?

4.
Have the number and complexity of the interfaces been minimized and are they consistent?

5.
Are the inputs and outputs for all the interfaces sufficient and necessary?

LEVEL OF DETAIL

1.
Are the requirements free of unwarranted design?

2.
Does each requirement in the FRD trace to one or more requirements in the FDD?

3.
Is there enough detail to proceed to the next phase of the life cycle?

4.
Have all "TBDs" been resolved?

April 1990

SU2 - Subsystem Functional Design Checklist

MAINTAINABILITY

1.
Have the requirements for software maintainability been specified?

2.
Have risk areas of the design been identified and isolated? Does the design complexity agree with development risk, cost, and schedule?

3.
Have all inherited or procured subsystems been documented? Has a cost/benefit analysis been identified?

4.
Are reusable parts of other designs being used? Have their effect on design and integration been stated?

5.
Are the requirements weakly coupled? Have the number of requirements that are affected when one requirement is changed been minimized?

6.
Have analyses been done for cohesion, coupling, traffic statistics, etc?

7.
Do the design features enable the system to meet maintainability requirements?

PERFORMANCE

1.
Are all performance attributes, assumptions, and constraints clearly defined?

2.
Do all explicit and implicit performance requirements have metrics expressed (e.g., timing, throughput, memory size, accuracy, precision)?

3.
For each performance requirement identified (explicit or implicit):

a.
Have the performance estimates been documented?

b.
Do rough estimates indicate that they can be met? Is the impact of failure defined?

c.
Do experiments, prototypes, or analyses verify that the requirements can be met?

RELIABILITY
1.
Has an explicit reliability goal been stated?

2.
Do the design features enable the system to meet reliability requirements?

3.
Are normal operating conditions/errors taken into account? Are special states considered (e.g.,

cold starts, abnormal termination, recovery)?

4.
Have fault tolerance features been identified or analyzed?

5.
Have the subsystem level error detection, reporting, and recovery features for internal and external errors been
described?

TESTABILITY
1.
Can the program sets be tested, demonstrated, analyzed, or inspected to show that they satisfy requirements?

2.
Can the subsystem components be developed and tested independently? incrementally?

3.
Have any special integration or integration testing constraints been levied?

TRACEABILITY
1.
Are the priorities of the requirements documented? Is the impact of not achieving the requirements defined?

2.
Are requirement traceability exceptions justified?

3.
Have all of the requirements been allocated to hardware, software, personnel, or procedures?

4.
Are all functions, structures, and constraints traced to requirements and vice versa?

5.
Are requirements stated in a manner so that they can be uniquely referenced in subordinate documents?

6.
Are the architectural components for each stage of implementation identified for reference in subordinate documents?

April 1990

R1 - Software Requirements Checklist

CLARITY

1.
Are the goals of the subsystem defined?

2.
Is the terminology consistent with the users' and/or sponsors' terminology?

3.
Are the requirements clear and unambiguous?

4.
Is a functional overview of the program set provided?

5.
Is an overview of the operational modes, states, and concept described?

6.
Have the software environment (co-resident program sets) and hardware environment (specific

configurations) been specified?

7.
If assumptions that affect implementation have been made, are they stated?

8.
Have the requirements been stated in terms of inputs, outputs, and processing for each function?

COMPLETENESS

1.
Are required attributes, assumptions, and constraints of the program set completely listed?

2.
Have all requirements and constraints been assigned a priority?

3.
Have the criteria for assigning requirement priority levels been defined?

4.
Have the requirements been stated for each delivery or staged implementation?

5.
Have requirements for installation (packaging, site preparation, operator training) been specified?

6.
Have the target language, development environment, and run-time environment been chosen?

COMPLIANCE

1.
Does the documentation follow project standards?
CONSISTENCY

1.
Are the requirements mutually consistent?

2.
Are the requirements in this document consistent with the requirements in related documents?

3.
Are the requirements consistent with the actual operating environment (e.g., check hardware timing, precision, event sequencing, data rates, bandwidth)?

4.
Do the requirements stay within the capability of the requirements allocated by the FDD?

CORRECTNESS
1.
Do the requirements seem feasible with respect to cost, schedule, and technology?

2.
Are the requirements consistent with the actual operating environment (e.g., hardware timing, precision, event sequencing, data rates, bandwidth)?

DATA USAGE

1.
Have the data type, rate, units, accuracy, resolution, limits, range, and critical values for all internal data items been specified?

2.
Have the data objects and their component parts been specified?

3.
Has the mapping between local views of data and global data been shown?

4.
Has the management of stored and shared data been described?

5.
Has a list of functions that set and/or use stored and shared data been provided?

6.
Are there any special integrity requirements on the stored data?

7.
Have the types and frequency of occurrence of operations on stored data (e.g., retrieve, store, modify, delete) been specified?

8.
Have the modes of access (e.g., random, sequential) for the shared data been specified?

FUNCTIONALITY

1.
Are all described functions necessary and sufficient to meet the mission/system objectives?

2.
Are all inputs to a function necessary and sufficient to perform the required operation?

3.
Does each function clearly describe how outputs (and shared data) are generated from inputs (and shared data)?

4.
Are all function states defined?

April 1990

R1 - Software Requirements Checklist

INTERFACE

1.
Are the inputs and outputs for all the interfaces sufficient and necessary?

2.
Are all the outputs produced by a function used by another function or transferred across an external interface?

3.
Are the interface requirements between hardware, software, personnel, and procedures included?

4.
Have the contents, formats, and constraints of all the displays been described in the SRD or SOM-1?

5.
Are all data elements crossing program set boundaries identified?

6.
Are all data elements described here or in the SIS-1?

7.
Has the data flow between internal software functions been represented?

LEVEL OF DETAIL

1.
Are the requirements free of design?

2.
Have all "TBDs" been resolved?

3.
Have the interfaces been described to enough detail for design work to begin?

4.
Have the accuracy, precision, range, type, rate, units, frequency, and volume of inputs and outputs

been specified for each function?

5.
Have the functional requirements been described to enough detail for design work to begin?

6.
Have the performance requirements been described to enough detail for design work to begin?

MAINTAINABILITY

1.
Are the requirements weakly coupled (i.e., changing a function will not have adverse and unexpected effects throughout the subsystem)?

2.
Will the requirements minimize the complexity of the design?

3.
Have FRD and FDD maintainability requirements been levied to functions?

4.
Have FRD and FDD portability requirements been levied to functions?

5.
Has the use of inherited design or code or pre-selected tools been specified?

PERFORMANCE

1.
Have the FRD and FDD performance requirements been allocated to each function?

2.
Have the resource and performance margin requirements been stated along with the means for managing them?

RELIABILITY

1.
Have quality factors been specified as measurable requirements or prioritized design goals?

2.
Have FRD and FDD reliability requirements been levied to functions?

3.
Have FRD and FDD availability requirements been levied to functions?

4.
Have FRD and FDD security/safety requirements been levied to functions?

5.
Are error checking and recovery required?

6.
Are undesired events considered and their required responses specified?

7.
Are initial or special states considered (e.g., cold starts, abnormal termination)?

8.
Have assumptions about intended sequences of functions been stated? Are these sequences required?

TESTABILITY

1.
Can the program set be tested, demonstrated, analyzed, or inspected to show that it satisfies the requirements?

2.
Are the individual requirements stated so that they are discrete, unambiguous, and testable?

3.
Have the overall program set acceptance criteria been established?

4.
Have clear pass/fail criteria for the acceptance tests been established?

5.
Have the test methods (test, demonstration, analysis, or inspection) been stated for each requirement?

TRACEABILITY

1.
Are all functions, structures, and constraints traced to requirements, and vice versa?

2.
Have the FDD and ISFD requirements been allocated to functions of the program set?

3.
Do the requirements (or traceability matrix) indicate whether they are imposed by the FDD or whether they are derived to support specific FDD requirements?

4.
Have the FRD, FDD, and any derived design goals and implementation constraints been specified and prioritized?

5.
Is each requirement stated in a manner that it can be uniquely referenced in subordinate documents?

April 1990

I0 - Architecture Design Checklist
CLARITY
1.
Is the architecture, including the data flows, control flows, and interfaces, clearly represented?

COMPLETENESS

1.
Are the goals defined?

2.
Have all TBDs been resolved in requirements and specifications?

3.
Can the design support any anticipated changes in the TBD requirements?

4.
Have the impacts of the TBDs been assessed?

5.
Has a risk plan been made for the parts of the design which may not be feasible?

6.
Have design tradeoffs been documented? Does the documentation include the definition of the trade space and the criteria for choosing between tradeoffs?

7.
Has design modeling been performed and documented?

8.
Are all of the assumptions, constraints, decisions, and dependencies for this design documented?

COMPLIANCE

1.
Does the documentation follow project standards?
CONSISTENCY
1.
Are data elements, procedures, and functions named and used consistently throughout the program set and
with external interfaces?

2.
Does the design reflect the actual operating environment? Hardware? Software?

3.
When appropriate, are there multiple, consistent, representations of the design (i.e. static vs.
dynamic)?

CORRECTNESS

1.
Is the design feasible from schedule, budget, and technology standpoints?

2.
Is the logic correct and complete?

DATA USAGE
1.
Is the conceptual view for all composite data elements, parameters, and objects documented?

2.
Is there any data structure needed that has not been defined, and vice versa?

3.
Have data elements been described to a sufficiently low level of detail? Have valid value ranges been
specified?

4.
Has the management and use of shared and stored data been clearly described?

FUNCTIONALITY

1.
Are the specifications for the modules consistent with the full functionality required for the module in the SRD and SIS-1?

2.
Is an abstract algorithm specified for each sublevel module?

3.
Will the selected design or algorithm meet all of the requirements for the module?

INTERFACES
1.
Are the functional characteristics of the interfaces described?

2.
Will the interface facilitate trouble-shooting?

3.
Are all interfaces consistent with each other, other modules, and requirements in SRD, SIS-1/2?

4.
Do all interfaces provide the required types, amounts, and quality of information?

5.
Have the number and complexity of interfaces been effectively balanced against one another to result in a
small number of total interfaces, each of which is of acceptable complexity?

6.
Is the operator interface designed with the user in mind (i.e., precise and non-jargon vocabulary, useful
messages)?

LEVEL OF DETAIL
1.
Has the size of each sublevel module been estimated (lines of code)? Is it reasonable?

2.
Is a reasonably large and representative set of the possible states or cases considered?

3.
Is the design of sufficient detail to proceed to the detailed design phase?

April 1990

I0 - Architecture Design Checklist
MAINTAINABILITY
1.
Is the design modular?

2.
Do the modules have high cohesion and low coupling?

PERFORMANCE
1.
Has performance modeling been performed when appropriate and has it been documented?

2.
Are all performance parameters specified (e.g., real time constraints, memory size, speed requirements,
amount of disk I/O)?

3.
Do processes have time windows (e.g., flags may be needed to "lock" structures, semaphores, some code may need to be non-interruptible)?

4.
Have all critical paths of execution been identified and analyzed?

RELIABILITY
1.
Does the design provide for error detection and recovery (e.g. input checking)?

2.
Are abnormal conditions considered?

3.
Are all error conditions specified completely and accurately?

4.
Does the design satisfy all systems integrity commitments for this product?

TESTABILITY
1.
Can the program set be tested, demonstrated, analyzed, or inspected to show that it satisfies
requirements?

2.
Can the program set be integrated with previously tested code and can it be tested incrementally?

TRACEABILITY
1.
Are all parts of the design traced back to requirements in SRD, SIS-1, other project documents?

2.
Can all design decisions be traced back to trade studies?

3.
Has the impact of special or unusual features of inherited designs on the current design been addressed?

4.
Are all known risks from inherited designs identified and analyzed?

I0 - Software Architecture Inspection Checklist

Compiled by Dr. Mikael Lindvall (mikli@fc-md.umd.edu) and
Dr. Roseanne Tesoriero Tvedt (rtvedt@fc-md.umd.edu)

Fraunhofer Center Maryland

Architecture/High-Level Design

These checklist items assume that the architecture/high-level design of the system has been defined. Specifically, it is assumed that:

· The structure of the system has been defined in terms of subsystems/components.

· There is a description of how these subsystems/components will interact (e.g. a list of high-level methods each subsystem/component can send).

· There is a description of the classes/functions that will be defined in each subsystem/component.

Requirements Traceability:

	Checklist Items:
	Examples:

	Are the non-functional goals and the design rationale of the architecture (high level design) clear?

Are they clearly represented by the structure of the architecture?

	Consider:

· Maintainability

· Changeability/Extensibility

· Reliability

· Safety

· Security

· Performance

	Is it clear where each requirement is going to be implemented using this architecture?

	For each subsystem/component consider:

· Do the components in the subsystem make sense in relation to the functional requirements for this subsystem?

· Do the classes in the component make sense in relation to the functional requirements for this component?
For each requirement, is it clear which subsystems and classes can implement that requirement?

If usage scenarios are available: For each usage scenario, is it clear which subsystems and classes will participate in implementing the relevant functionality?

	Are all specified system outputs and inputs covered with this architecture?
	Is it clear which component(s) is(are) responsible for input and/or output?

Structure:

	Is the design modular?
	Consider, based on the subsystem, class, and method names, and any description provided:

· Are there parts of the system that could be abstracted to a higher/common level?

· Is functionality duplicated in several components?

Examples:

· login/authentication handshake described in multiple components

· duplicate network communication functionality

· Are there parts of the system that could be refactored to make it more efficient?

Examples:

· Reducing coupling
· Reducing the length of paths between components

· Check that separation of concerns has not been violated

	Does the structure of the system represent more functionality than specified by requirements?
	For each subsystem/component consider:

· Is the functionality the component provides necessary in order to implement the specified requirements?

	For multi-machine or multi-processor systems:

Is it clear how the structure of the architecture will be allocated to processors and threads?

	For each subsystem/component consider:

· Is it clear which machine/processor will be allocated for the subsystem/component?

· Is it clear which run-time processes/threads will use this subsystem/component?

· Is the subsystem/component functionality assigned to the appropriate thread?

Example:

· Are all thread-safe tasks assigned appropriately?

Interfaces:

	Does any unnecessary coupling exist?
	Examples:

· Extra coupling between components that should not be communicating with each other

· components that directly access each other rather than going through an intermediate component

· components not capable of communicating with each other with direct interfaces described

· Components accessing more than the number of required classes in a component

	Is there missing communication among components/subsystems?

	Examples:

· Missing functionality

· Communication exists in the wrong place

	Are there few couplings among components (low coupling) and are the interfaces between any two components as narrow as possible (narrow interfaces)?

	For each component, consider:

· Is the component accessing too many other components?

· Are too many classes within the component involved in external interfaces (i.e., coupled with classes in external components)?

	Is all inter-module communication clearly described?

	Consider:

· Has a protocol been defined that clearly describes the messaging structure for components?

· Do components communicate according to that protocol?

Design Patterns:

	Are architectural styles and design patterns used where possible?
	Consider:

· Could the architecture be converted to known architectural styles/design patterns?

	Do the interfaces specified in the design follow the architectural styles/design patterns used?
	For each component’s interface, consider:

· Is the coupling that exists in the interface permitted according to its role in the architectural style/design pattern used?

State machines:

	Are the states complete and orthogonal?
	Example problems:

· Missing states

· Duplicate states

· Overlapping states

	Are the transition conditions from each state complete and orthogonal? Are they deterministic?
	Consider:

· Is there a transition defined on each state for every possible input?

· Is there exactly one transition defined for each input on each state?

Exception handling:

	Are all off-nominal scenarios described and handled appropriately?

	Consider whether there are subsystems/classes and methods in this architecture that would handle:

· Lost network connections

Example precautions:

· retry connections

· keep-alive messages

· Unavailable data sources

Example precautions:

· redundancy in functionality

· voting mechanisms

· Lack of memory/disk space

Example precautions:

· swapping strategy

· garbage collection strategy

· redundancy in disk space

· Invalid input

Example precautions:

· input validation resources

· recovery mechanisms for invalid input

· Timing issues/delays
Example precautions:

· synchronization mechanisms

· recovery mechanisms for delays

· Security vulnerabilities
Example precautions:

· limited access to components
· encryption mechanisms

References:

Pressman, R. S., “Adaptable Process Model Software Engineering Checklists: Reviewing OOA and OOD Models, “ 2001. http://www.rspa.com/checklists/ooadmods.html
Pressman, R. S., “Adaptable Process Model Software Engineering Checklists: Conducting and Reviewing the Software Design Model,” 2001. http://www.rspa.com/checklists/designmodel.html
Royalty Free Software Development Templates, “Architectural Design Review Checklist,” http://www.klariti.com/templates/Architectural-Design-Review-Checklist.shtml

April 1990

I1 - Detailed Design Checklist

CLARITY

1.
Is the intent of all units or processes documented?

2.
Is the unit design, including the data flow, control flow, and interfaces, clearly represented?

3.
Has the overall function of the unit been described?

COMPLETENESS

1.
Have the specifications for all units in the program set been provided?

2.
Have all the acceptance criteria been described?

3.
Have the algorithms (e.g., in PDL) used to implement this unit been specified?

4.
Have all the calls made by this unit been listed?

5.
Has the history of inherited designs been documented along with known risks?

COMPLIANCE

1.
Does the documentation follow project standards?
2.
Has the unit design been created using the required methodology and tools?

CONSISTENCY

1.
Are data elements named and used consistently throughout the unit and unit interfaces?

2.
Are the designs of all interfaces consistent with each other and with the SIS-2 and SSD-1?

3.
Does the detailed design, together with the architectural design, fully describe the "as-built" system?

CORRECTNESS

1.
Is there logic missing?

2.
Are literals used where a constant data name should be used?

3.
Are all conditions handled (greater-than, equal-to, less-than-zero, switch/case)?

4.
Are branches correctly stated (the logic is not reversed)?

DATA USAGE

1.
Are all the declared data blocks actually used?

2.
Have all the data structures local to the unit been specified?

3.
Do all routines that modify data (or files) shared with other routines access that shared data (or files) according to a correct data sharing protocol (e.g., mutual exclusion via semaphores)?

4.
Are all logical units, event flags, and synchronization flags defined and initialized?

5.
Are all variables, pointers, and constants defined and initialized?

FUNCTIONALITY

1.
Does this design implement the specified algorithm?

2.
Will this design fulfill its specified requirement and purpose?

INTERFACE

1.
Do argument lists match in number, type, and order?

2.
Are all inputs and outputs properly defined and checked?

3.
Has the order of passed parameters been clearly described?

4.
Has the mechanism for passing parameters been identified?

5.
Are constants and variables passed across an interface treated as such in the unit's design (e.g. a constant should not
be altered within a subroutine)?

6.
Have all the parameters and control flags passed to and returned by the unit been described?

7.
Have the parameters been specified in terms of unit of measure, range of values, accuracy, and precision?

8.
Is the shared data areas mapped consistently by all routines that access them?

LEVEL OF DETAIL

1.
Is the expansion ratio of code to design documentation less than 10:1?

2.
Are all required module attributes defined?

3.
Has sufficient detail been included to develop and maintain the code?

April 1990

I1 - Detailed Design Checklist

MAINTAINABILITY

1.
Does this unit have high internal cohesion and low external coupling (i.e., changes to this unit do not have any
unforeseen effects within the unit and have minimal effect on other units)?

2.
Has the complexity of this design been minimized?

3.
Does the header meet project standards (e.g., purpose, author, environment, nonstandard features used,
development history, input and output parameters, files used, data structures used, units invoking this one, units
invoked by this one, and explanatory notes)?

4.
Does the unit exhibit clarity, readability, and modifiability to meet maintenance requirements?

PERFORMANCE

1.
Do processes have time windows?

2.
Have all the constraints, such as processing time and size, for this unit been specified?

RELIABILITY

1.
Are default values used for initialization and are they correct?

2.
Are boundary checks performed on memory accesses (i.e., arrays, data structures, pointers, etc.) to insure that only
the intended memory locations are being altered?

3.
Is error checking on inputs, outputs, interfaces, and results performed?

4.
Are meaningful messages issued for all error conditions?

5.
Do return codes for particular situations match the global definition of the return code as documented?

6.
Are undesired events considered?

TESTABILITY

1.
Can each unit be tested, demonstrated, analyzed, or inspected to show that they satisfy requirements?

2.
Does the design contain checkpoints to aid in testing (e.g., conditionally compiled code, data assertion tests)?

3.
Can all logic be tested?

4.
Have test drivers, test data sets, and test results for this unit been described?

TRACEABILITY

1.
Are all parts of the design traced back to the requirements?

2.
Can all design decisions be traced back to trade studies?

3.
Have all the detailed requirements for each unit been specified?

4.
Have the unit requirements been traced to the SSD-1? Have the SSD-1 specifications been traced to the unit
requirements?

5.
Has a reference to the code or the code itself been included?

I1 - Software Architecture/Design Inspection Checklist

Compiled by Dr. Mikael Lindvall (mikli@fc-md.umd.edu) and
Dr. Roseanne Tesoriero Tvedt (rtvedt@fc-md.umd.edu)

Fraunhofer Center Maryland

Detailed Design

In the detailed design, it is assumed that all of the information available for the architecture/high-level design is available. In addition, it is expected that each class/method/function will be described in greater detail:

· At the very least, all classes will have attributes and method interfaces (i.e., input and output parameter lists and types) described.

· For selected methods/functions, important algorithms will be described in detail using pseudocode. Checklist items relating to pseudocode are shaded.

Functionality/Design:

	Is the separation of concerns violated?

	Examples:

· In a GUI class, there should be no coupling directly to the database

· Excessive coupling with other components

· Are there classes that seem to be misplaced?

	Are there duplicate functionalities/attributes?

	Examples:

· Can some of the functionality be factored out into a separate component/class?
· Can the design be streamlined?

	Is there a module (class, method/function) that doesn’t implement a cohesive piece of functionality?
	Examples:

· Are there methods/functions that seem to be misplaced?

· Is there any missing or extraneous functionality in the module?

	Is there a lack of conformance between design and requirements?
	Examples:

· Is there any extra functionality?
· Is there any missing functionality?

Naming/Visibility:

	Are all names clear and appropriate?
	Consider:

· Components,

· Classes,

· Methods/Functions,

· Constants, or

· Variables

	Are variables/methods defined with improper scope and/or visibility?
	Examples:

· Global variables defined instead of local variables

· Instance variables defined instead of local variables

· Instance variable defined as public instead of private

· Methods defined as public instead of private

	Are buffers inappropriately sized?

	Examples:

· Buffer too small/large for expected data

Input/Output:

	Are the necessary inputs/outputs described adequately?
	Consider:

· Are all of the input values required by the module/component available?

· Are the units of the input/output values documented and correct?

	When pseudocode is available:
	

	Are all files opened before use and closed after use?
	Consider:

· Is there any excessive opening and closing?

	Are the attributes of the open statement consistent with the use of the file?
	Example:

· Read/Write when only Read is necessary

	Are error conditions checked?
	Examples:

· EOF

· EOL

· Access rights

· File does/doesn’t exist

	Is buffered data flushed?
	

Performance:

	Can better data structures be used?
	Consider:

· Data structures with unnecessary attributes
· Data structures with confusing attributes

	Are there parts of the system that could be refactored to make it more efficient?

	Examples:

· Reducing coupling

· Reducing the length of paths between components

	When pseudocode is available:
	

	Can more efficient algorithms be used?
	Consider:

· Algorithms that can be accomplished with fewer, more understandable steps

	Are logical tests arranged appropriately?
	Consider:

· Do often successful and inexpensive tests precede the more expensive and less frequently successful tests?

	Are values being computed efficiently?
	Consider:

· Can computing the value once and storing the result reduce the cost of recomputing a value?
· Is every result that is computed and stored actually used?

	Are loops constructed efficiently?

	Consider:

· Can part of the computation be moved outside the loop?
· Are there superfluous tests within the loop?
· Can a short loop be unrolled?
· Are there two loops operating on the same data that can be combined into one?

	Are short and commonly called methods/functions declared inline/macro?
	

	Are methods/functions being called unnecessarily?
	Examples:

· Multiple creation/destruction of data structures
· Calls to the same method that do not provide extra benefit

Computation (when pseudocode is available):

	Is the computation done correctly?
	Consider:

· Computation/comparison with mixed data types (e.g. units of measure)

· Division by zero

	Are buffer overflows checked?
	Examples:

· Are there always size checks when copying into a buffer?

· Can the buffer ever be too small to hold its contents?

	Are methods/functions computing values correctly?
	Consider:

· Does it describe the correct return value at every function return point?

· Are value and reference parameters described properly?

· If a parameter is passed by reference, does its value get changed, and changed correctly by the algorithm for the called function?

Control Flow (when pseudocode is available):

	Are loops constructed improperly?
	Consider:

· Choice of looping construct
· Level of nesting (too deep?)

	Will each loop terminate?
	

	Is each loop executed the correct number of times?
	

	Is there any unreachable part of the algorithm?
	

	Is there only one exit point per method/function?
	

Exception handling (when pseudocode is available):

	Are all of the relevant exceptions described?
	Examples:

· Arrays bounds

· Null pointers

· Negative values

· Deleting from/Adding to an empty list

· Handling invalid input

	Is exception handling used for inappropriate purposes?
	Example:

· Handling loop exit points

Dynamic allocation (when pseudocode is available):

	Is dynamic memory allocated correctly?
	Examples:

· Too small/large

	Is dynamic memory freed and freed when appropriate?
	Examples:

· Every dynamic object created should be destroyed

References:

Pressman, R. S., “Adaptable Process Model Software Engineering Checklists: Reviewing OOA and OOD Models, “ 2001. http://www.rspa.com/checklists/ooadmods.html
Pressman, R. S., “Adaptable Process Model Software Engineering Checklists: Conducting and Reviewing the Software Design Model,” 2001. http://www.rspa.com/checklists/designmodel.html
Royalty Free Software Development Templates, “Architectural Design Review Checklist,” http://www.klariti.com/templates/Architectural-Design-Review-Checklist.shtml

April 23, 2007
"C" Code Inspection Checklist

The following checklist is all inclusive and therefore not meant to be used in its entirety for a specific software ‘C’ code inspection. This checklist contains too may items for an inspector to keep in mind at once to perform an inspection. Therefore, pre-tailoring suggestions have been identified by highlighting items in gray. These gray items could potentially be tailored out depending on the desired project software characteristics (e.g., maintainability, performance, understandability). Trade-off considerations must be made in tailoring the checklist to the desired software characteristics (e.g., performance versus software understandability or maintainability). Be careful that you don’t end up tailoring out something that is important to the project.
FUNCTIONALITY
· Does the code match the Detailed Design? (The problem may be in either the code or the design.)

· Does the code avoid dependencies on evaluation order or order of effects, which may make the correct answer difficult for readers to determine?

· Has duplicate or near-duplicate code been removed? Check for:

· Is there repetitive code that could be replaced by a call to a function that provides the behavior of the repetitive code?

· Are there multiple functions that could be replaced by aggregating them into one that uses parameters instead, e.g. setRight, setLeft, setCenter could be merged to int set(int position)?

· Is there suitable conformance between code and requirements?
Check for:

· Is there any extra functionality?

· Is there any missing functionality?

· Is the code consistent with performance requirements?

· Does each function implement a cohesive piece of functionality? Check for:

· Is there code that seems to be misplaced? Is there code that should be placed in a separate function?

· Is there any missing or extraneous functionality?

CORRECTNESS

· Is the computation done correctly? Check for:

· Computation/comparison with mixed data types (e.g. units of measure)

· Proper use of operator precedence

· Parenthesis to avoid ambiguity

· = instead of ==; & instead of && and | instead of ||

· Side effects of comparisons

· Division by zero

· Integer division causing unexpected truncation/rounding

· Are functions computing values correctly? Consider:

· Does it return the correct value at every function return point?

· Are value and reference parameters used properly?

· If a parameter is passed by reference, does its value get changed, and changed correctly by the called function?

· Are all of the relevant exception cases correctly handled?

· Examples: arrays bound; null pointers; negative values; removing from an empty list

· Are buffer overflows checked?
Examples:

· Are there always size checks when copying into a buffer?

· Can the buffer ever be too small to hold its contents?

· Is dynamic memory freed and freed when appropriate?
Examples:

· Every malloc should have a free

· Every new should have a delete

· Is each loop executed the correct number of times?

· Does each switch statement have a default clause?

· Is all of the code reachable?

April 23, 2007

DATA USAGE
· Are all variables initialized properly? Check for:

· Uninitialized variables (some compilers will catch automatically); initialized with wrong value

· Are constants that are used in multiple files defined in an INCLUDE header file?

· Are constants defined via "# define"?

· Are pointers declared and used as pointers (not integers)?

· Are pointers not typecast (except assignment of NULL)?
CONTROL
· Is there only one exit point per function?
Consider:

· multiple returns in a function

· use of labels

· Are "goto" and "labels" used only when absolutely necessary, and always with well-commented code?

· In a switch statement, are all cases terminated with a break statement?

LINKAGE
· Is all data local in scope (internal static or external static) unless global linkage is specifically necessary and commented?

· Are "INCLUDE" files used according to project standards (if any)?

· Are nested "INCLUDE" files avoided?

MAINTENANCE
· Is the function independent of specific devices where possible?

· Are non-standard usages isolated in subroutines and well documented?

· Is the function easy to change?

· Are the names of constants and macros easy to identify and differentiate from variable names?

· Are variables defined with proper scope and/or visibility?

· Check for: Global variables defined instead of local variables; Local variables hide references to global variables

· Have constants been defined for appropriate variables or array indexes?

· Examples: MAXBUFFER instead of 100; open(logFilename) instead of open("/home/user/project/log.txt")

INTERFACE

· Are all files opened before use and closed after use? Consider:

· Is there any excessive opening and closing?

· Are the attributes of the open statement consistent with the use of the file?

· Are error conditions checked? (EOF, EOL, access rights)

· Is buffered data flushed?

CLARITY
Commenting

· Does every file and function have an appropriate, informative, and complete header comment?

· Are there sufficient comments to understand the code?

· Are the functions of arrays and variables described?

· Example information to include could be: Usage, units of measure, bounds, implied accuracy of decimal values, data entry rules

· Are there uncommented parameters and/or return values in function definitions?

· Example information to include in comments include: possible output values, expected input values, meaning of return values

· Are any of the comments superfluous? (e.g. i++; /* add 1 to i */)

· Do the comments accurately explain what the code does?

· Are changes made to code after its release noted in the development history section of the header?

Understandability
· Do functions, constants or variables have appropriate and informative names?

· Is the layout of the code such that the logic is apparent?

April 23, 2007

PERFORMANCE

· Are the data structures and algorithms that are used as efficient and optimal as possible?

· Are logical tests arranged appropriately? Consider:

· Do often successful and inexpensive tests precede the more expensive and less frequently successful tests?

· Are values being computed efficiently?
Consider:

· Can the cost of recomputing a value be reduced by computing the value once and storing the result?

· Is every result that is computed and stored actually used?

· Are loops constructed efficiently? Consider:

· Can part of the computation be moved outside the loop?

· Are there superfluous tests within the loop?

· Can a short loop be unrolled?

· Are there two loops operating on the same data that can be combined into one?

· Are frequently used variables declared as register?

· Are short and commonly called functions declared inline?

· Are unnecessary function calls avoided? Examples:
· Multiple creation/destruction of data structures

· Calls to the same function that do not provide extra benefit

I2 - Code Inspection Checklist

Compiled by Ms. Patricia Costa (pcosta@fc-md.umd.edu) and

Dr. Roseanne Tesoriero Tvedt (rtvedt@fc-md.umd.edu)

Fraunhofer Center Maryland

Comments

	Checklist Items:
	Examples:

	Are changes made to a module after its release noted in the development history section of the header?
	

	Does every file, class, function/method have an appropriate header comment?
	

	Do the comments accurately explain what the code does?
	

	Are any of the comments superfluous?
	Example:

 i++; /* add 1 to i */

	Are variables (global, local and instance variables) uncommented?
	Example information to include in comments:

· Usage

· Units of measure

· Bounds, Legal values

· Implied/displayed number of decimal points

· Display format

· Data entry rules (e.g. must enter)

	Are there uncommented parameters and/or return values in method/function definitions?
	Example information to include in comments:

· possible output values

· expected input values

· meaning of return values

Declarations

	Are there any classes, methods/functions, constants or variables with inappropriate or misleading names?
	

	Are variables/methods defined with improper scope and/or visibility?
	Examples:

· Global variables defined instead of local variables

· Instance variables defined instead of local variables

· Instance variable defined as public instead of private

· Implementation revealing methods appear in the public interface of the class

· Local variables hide references to instance variables

	Are variables initialized improperly?
	Examples:

· uninitialized variables (some compilers catch automatically)

· initialized with wrong value

	Are buffers inappropriately sized?
	Examples:

· buffer too small/large for expected data

	Are there any variables or array indexes that should be defined as constants?
	Examples:

· 100 instead of MAXBUFFER

· open("/home/user/project/log.txt") instead of open(logFilename)

Design/Functionality:

	Is there duplicate code?

	Examples:

· Is there repetitive code that could be replaced by a call to a function/method that provides the behavior of the repetitive code?
· Are there multiple methods/functions that could be replaced by aggregating them into one that uses parameters instead, e.g. setRight, setLeft, setCenter could be merged to int set(int position)?
· Are any abstract superclasses missing? (Code repeated in many classes can be abstracted to a superclass.)

	Is there a module (class, method/function) that doesn’t implement a cohesive piece of functionality?

	Examples:

· Is there code that seems to be misplaced in the module? Is there code that should be placed in a separate method/function or class? (I.e. in a GUI class, there should be no code that deals directly with the database.)

· Are there classes that don’t have appropriate constructor and destructor methods?

· Are there methods/functions where query and modify behaviors are mixed within the same method?

· Is there any missing or extraneous functionality in the module?

	Is there a lack of conformance between code and requirements?
	Examples:

· Is there any extra functionality?
· Is there any missing functionality?

	Is there a lack of conformance between code and design?

	Examples:

· Are interfaces correctly used as defined in the design document?
· Does any class access one or more unplanned (i.e., not specified in the design) classes/methods?
· Does any class fail to access all of the planned (i.e., specified in the design) classes?

	Is the correct level of indirection used?

	Consider:

· Pointers
· Access to class members

	Are non-standard usages isolated in subroutines and well documented?
	

Control Flow:

	Are loops constructed improperly?
	Consider:

· choice of looping construct
· level of nesting (too deep?)

	Will each loop terminate?
	

	Is each loop executed the correct number of times?
	

	Does each switch statement have a default clause?
	

	In a switch statement, is there a case not terminated with a break statement?
	

	Is there any unreachable code?
	

	Is there only one exit point per method/function?
	Consider:

· multiple returns in a method/ function

· use of labels

Exceptions

	Are all of the relevant exceptions caught?
	Examples:

· arrays bounds

· null pointers

· negative values

· removing from an empty list

	Is exception handling used for inappropriate purposes?
	Example:

· handling loop exit points

Dynamic allocation

	Is dynamic memory allocated correctly?
	Examples:

· too small/large

	Is dynamic memory freed and freed when appropriate?
	Examples:

· Every malloc should have a free

· Every new should have a delete

Input/Output

	Are all files opened before use and closed after use?

	Consider:

· Is there any excessive opening and closing?

	Are the attributes of the open statement consistent with the use of the file?
	

	Are error conditions checked?
	Examples:

· EOF

· EOL

· Access rights

	Is buffered data flushed?
	

Computation
	Is the computation done correctly?
	Check for:

· Computation/comparison with mixed data types (e.g. units of measure)

· Proper use of operator precedence

· Parenthesis to avoid ambiguity

· = instead of ==; & instead of && and | instead of ||

· Side effects of comparisons

· Division by zero

· Integer division causing unexpected truncation/rounding

	Are buffer overflows checked?
	Examples:

· Are there always size checks when copying into a buffer?

· Can the buffer ever be too small to hold its contents?

	Are methods/functions computing values correctly?
	Consider:

· Does it return the correct value at every function return point?

· Are value and reference parameters used properly?

· If a parameter is passed by reference, does its value get changed, and changed correctly by the called function?

Performance

	Can better data structures or more efficient algorithms be used?
	

	Are logical tests arranged appropriately?
	Consider:

· Do often successful and inexpensive tests precede the more expensive and less frequently successful tests?

	Are values being computed efficiently?
	Consider:

· Can the cost of recomputing a value be reduced by computing the value once and storing the result?
· Is every result that is computed and stored actually used?

	Are loops constructed efficiently?

	Consider:

· Can part of the computation be moved outside the loop?
· Are there superfluous tests within the loop?
· Can a short loop be unrolled?
· Are there two loops operating on the same data that can be combined into one?

	Are frequently used variables declared as register?
	

	Are short and commonly called methods/functions declared inline?
	

	Are methods/functions being called unnecessarily?
	Examples:

· Multiple creation/destruction of data structures
· Calls to the same method that do not provide extra benefit

References

Rieger, Matthias. “Maintainability Code Inspection Checklist”. 2001. http://www.iam.unibe.ch/~scg/Teaching/PSE/projektHandbuch/codeInspections/maintainabilityChecklist.html
Software Quality Consulting. “Code Inspection Checklist for ‘C’ Code”. http://www.swqual.com/training/Code1.pdf
Baldwin, John. “An Abbreviated C++ Code Inspection Checklist”. 1992. http://www.swqual.com/training/Code2.pdf and http://www2.ics.hawaii.edu/~johnson/FTR/Bib/Baldwin92.html
Noll, John. “Code Inspection Checklist”. 2003. http://www.cse.scu.edu/~jnoll/286/projects/checklist.html
Fox, Christopher. “Code Inspection Checklist”. 1998. http://www.infosec.jmu.edu/courses/CS555infosec99/Deliverables/CppChk.htm
Dalbey, John. “Java Code Inspection Checklist”. http://www.csc.calpoly.edu/~jdalbey/205/Resources/InspectChecklist.html
JPL. “Code Inspection Checklist - C”. 1988.

http://eis.jpl.nasa.gov/quality/Formal_Methods/document/swcck.doc
JPL. “Code Inspection Checklist – Fortran”. 1988.

http://eis.jpl.nasa.gov/quality/Formal_Methods/document/swfortck.doc
I2 - Code Inspection Checklist

FORTRAN

FUNCTIONALITY
1.
Do the modules meet the design requirements?

2.
Does each module have a single purpose?

3.
Is there some code in the module that should be a function or a subroutine?

4.
Are utility modules used correctly?

5.
Does the code match the Detailed Design specifications? If not, the design specifications may be in error.

6.
Does the code impair the performance of the module (or program) to any significant degree?

DATA USAGE
A.
General
1.
Is the data defined?

2.
Are there undefined or unused variables?

3.
Are there typos, particularly "O" for zero, and "l" for one?

4.
Are there misspelled names that are compiled as function or subroutine references?

5.
Are declarations in the correct sequence? (DIMENSION, EQUIVALENCE, DATA).

B.
Common/Equivalence
1.
Are there local variables that are in fact misspellings of a COMMON element?

2.
Are the elements in the COMMON in the right sequence?

3.
Do EQUIVALENCE statements force any unintended shared data storage?

4.
Is each EQUIVALENCE commented?

C.
Arrays
1.
Are all arrays DIMENSIONed?

2.
Are array subscript references in column, row order? (Check all indices in multi-dimensioned arrays.)

3.
Are array subscript references within the bounds of the array?

4.
Are array subscript references checked in critical cases?

5.
Is each array used for only one purpose?

D.
Variables
1.
Are the variables initialized in DATA statements, BLOCK DATA, or previously defined by assignments or COMMON usage?

2.
Should variables initialized in DATA statements actually be initialized by an assignment statement; that is, should the variable be initialized each time the module is invoked?

3.
Are variables used for only one purpose?

4.
Are variables used for logical unit assignments?

5.
Are the correct types (REAL, INTEGER, LOGICAL, COMPLEX) used?

E.
Input and Output
1.
Do FORMATs correspond with the READ and WRITE lists?

2.
Is the intended conversion of data specified in the FORMAT?

3.
Are there redundant or unused FORMAT statements?

4.
Should this module be doing any I/O? Should it be using a message facility?

5.
Are messages understandable?

6.
Are messages phrased with the correct grammar? Do messages read like a robot or person talking?

 Robot:
"Mount tape on drive. Turn on."

 Person:
"Mount the tape on the tape drive. Then turn the tape drive on."

7.
Does each line of a message fit on all of the expected output devices?

I2 - Code Inspection Checklist

FORTRAN

F.
Data
1.
Are all logical unit numbers and flags assigned correctly?

2.
Is the DATA statement used and not the PARAMETER statement?

3.
Are constant values constant?

CONTROL
A.
Loops
1.
Are the loop parameters expressed as variables?

2.
Is the initial parameter tested before the loop in those cases where the initial parameter may be greater than the terminal parameter?

3.
Is the loop index within the range of any array it is subscripting? Is there a check in critical cases such as COMMONs?

4.
Is the index variable only used within the DO loop?

5.
If the value of the index variable is required outside the loop, is it stored in another location?

6.
Does the loop handle all the conditions required?

7.
Does the loop handle error conditions?

8.
Does the loop handle cases that may "fall through"?

9.
Is loop nesting in the correct order?

10.
Can loops be combined?

11.
If possible, do nested loops process arrays as they are stored, with the innermost loop processing the first index (column index) and outer loops processing the row index?

B.
Branches
1.
Are branches handled correctly?

2.
Are branches commented?

3.
When using computed GO TOs, is the fall-through case tested, checked, and handled correctly?

4.
Are floating point comparisons done with tolerances and never made to an exact value?

LINKAGE
 1.
Does the CALLing program have the same number of parameters as each routine?

 2.
Are the passed parameters in the correct order?

 3.
Are the passed parameters the correct type? If not, are mismatches proper?

 4.
Are constant values passed via a symbol (variable) rather than being passed directly?

 5.
Is an unused parameter named DUMMY, or some name that reflects its inactive status?

 6.
Is an array passed to a subroutine only when an array is defined in the subroutine?

 7.
Are the input parameters listed before the output parameters?

 8.
Does the subroutine return an error status output parameter?

 9.
Do the return codes follow conventions?

10.
Are arrays used as intended?

11.
If array dimensions are passed (dynamic dimensioning) are they greater than 0?

12.
If a subroutine modifies an array, are the indices checked, or are the dimensions passed as parameters?

13.
Does a subroutine modify any input parameter? If so, is this fact clearly stated?

14.
Do subroutines end with a RETURN statement and not a STOP or a CALL EXIT?

15.
Does a FUNCTION routine have only one output value?

I2 - Code Inspection Checklist

FORTRAN

COMPUTATION
1.
Are arithmetic expressions evaluated as specified?

2.
Are parentheses used correctly?

3.
Is the use of mixed-mode expressions avoided?

4.
Are intermediate results stored instead of recomputed?

5.
Is all integer arithmetic involving multiplication and division performed correctly?

6.
Do integer comparisons account for truncation?

7.
Are complex numbers used correctly?

8.
Is the precision length selected adequate?

9.
Is arithmetic performed efficiently?

10.
Can a multiplication be used instead of a division? If so, is it commented so as not to obscure the process?

MAINTENANCE
 1.
Are library routines used?

 2.
Is non-standard FORTRAN isolated in subroutines and well documented?

 3.
Is the use of EQUIVALENCE limited so that it does not impede understanding the module?

 4.
Is the use of GO TOs limited so that it does not impede understanding the module?

 5.
Does each module have one exit point?

 6.
Is there no self-modifying code? (No ASSIGN statements, or PARAMETER statements.)

 7.
Is the module easy to change?

 8.
Is the module independent of specific devices where possible?

 9.
Where possible, are the CALLing routine parameter names the same as the subroutine parameter names?

10.
Are type declarations implicit rather than explicit when possible?

CLARITY
1.
Is the module header informative and complete?

2.
Are there sufficient comments to understand the code?

3.
Are the comments in the modules informative?

4.
Are comment lines used to group logically-related statements?

5.
Are the functions of arrays and variables described?

IT1 - Test Plan Checklist

CLARITY
1.
Does the Test Plan clearly specify the order of the steps of all integration testing?

COMPLETENESS

1.
Does the Test Plan specify the overall approach and policy for acceptance test?

2.
Does the Test Plan include a description of the type of hardware and software system environment to be used?

3.
Does the Test Plan define success criteria for all tests?

4.
Does the Test Plan adequately describe the functions being tested?

5.
Does the Test Plan explicitly describe those functions that will not be tested during integration test?

6.
Does the Test Plan describe conditions under which testing will be halted and resumed during integration test?

7.
Does the test case set adequately exercise all significant code changes, particularly interface modifications?

8.
Does the Test Plan adequately describe integration test baselines?

9.
For a phased delivery, does the Test Plan establish test baselines in each phase for use in the next phase?

10.
Does the Test Plan define sufficient and proper regression testing?

COMPLIANCE

1.
Does the Test Plan list all the specifications, standards, and documents necessary for its development?

CONSISTENCY

1.
Has the order of integration tests been defined to match the order of integration specified in higher-level documents?

2.
Is the Test Plan consistent with higher-level test plan documents?

CORRECTNESS

1.
Are the Test Plan entrance and exit criteria realistic?

2.
Are all necessary drivers and stubs identified and available to test the function as specified?

3.
Are all dependencies between the input simulator and the hardware addressed?

DATA USAGE
1.
Does the test case set include adequate coverage of illegal and conflicting input combinations?

2.
Does the test case set include adequate usage of default input values?

3.
Does the test case set exercise an adequate number of program error paths?

FUNCTIONALITY
1.
Is the Test Plan adequate to meet acceptance criteria?

INTERFACES

1.
Does the test case set adequately exercise the handling of information flow across external interfaces?

LEVEL OF DETAIL

1.
Is the coverage of the test case set sufficiently complete to provide confidence that the functions being tested operate correctly within their intended environment?

MAINTAINABILITY

1.
Are control and incorporation of changes to the specifications, design, or coding that may occur during test contained in the Test Plan?

PERFORMANCE

1.
Are performance goals for the test procedures explicitly stated?

RELIABILITY

1.
Is sufficient test data collected and documented to support estimation of the software’s reliability?

IT1 - Test Plan Checklist

TESTABILITY
1.
Is the testing approach feasible?

2.
Are all those requirements considered untestable and unable to be tested identified, and is it explanned why they are untestable or unable to be tested?

3.
Has development and procurement of test facilities (input simulators and output analyzers), methods, and tools been scheduled with adequate lead time?

4.
Are the testing schedules described to a sufficient level of detail (testing schedules are described for each individual function to be tested)?

5.
Is the method of estimating resource usage required for testing identified?

6.
For multiple builds, have all requirements been identified on a per-build basis?

7.
Have the roles and responsibilities for all personnel involved in the test activity been identified?

8.
Is the specification of test facilities consistent with the test success criteria?

9.
Are there any scheduling conflicts among the testing personnel schedules?

10.
Does the Test Plan call for the participation of independent quality assurance personnel to verify test activity?

11.
Does the Test Plan call for independent testing?

TRACEABILITY

1.
Do the acceptance tests exercise each requirement specified in higher level documents (FRD, FDD, SRD)?

2.
Are the test acceptance criteria traceable to higher level requirements documents (SIS, UG/SOM, FRD, SRD, FDD)?

3.
Does the test case set for integration test exercise each interface described in higher level documents (SIS and SSD)?

April 1990

IT2 - Test Procedure and Function Checklist

CLARITY

1.
Are the operator instructions explicit and clear for ease of execution of the test procedure?

2.
Are the steps of the set-up and test procedures precise, unambiguous, and listed as individual items?

3.
Are there "progress" messages that will notify the operator when significant parts of the test are being executed?

4.
Are the criteria for success and failure clear and unambiguous?

COMPLETENESS

1.
Is the expected response to each step of the test procedure described with the operator instructions for that step?

2.
Does the test procedure list the precedence of tests?

3.
Does the test procedure indicate the significance of proper evaluation of test results?

4.
Do the test procedures lead to the determination of success or failure?

COMPLIANCE
1.
Does the Test Plan list all the specifications, standards, and documents necessary for its development?

CONSISTENCY

1.
Are all dependencies of the test procedure identified?

CORRECTNESS

1.
Do the observed results of performing the procedure agree with the expected program behavior?

2.
Are the interfaces between the code being tested and the test equipment and software correct?

3.
Are the formats of the input data correct?

4.
Are the operator instructions presented step-by-step and in the order in which they must be performed?

5.
Is the function being tested accurately described?

6.
Is the function being tested the latest revision?

7.
Is the description of the purpose of this test procedure complete and accurate?

8.
Are there criteria for test success and failure?

DATA USAGE
1.
Are an adequate number of control paths in the tested function exercised?

2.
Are an adequate number of logical condition expressions in the tested function exercised?

3.
Do the test cases demonstrate the program’s response to illegal and conflicting input data?

FUNCTIONALITY
1.
Is each requirement associated with this function exercised by this test procedure?

2.
Does the procedure state whether or not it is possible to continue in the event of a program stop or indicated error? If so, does it indicate the method for restarting or other recovery action?

INTERFACES

1.
Does the test case set adequately exercise the handling of information flow across external interfaces?

LEVEL OF DETAIL

1.
Are all normal and abnormal completion messages identified?

MAINTAINABILITY

1.
Are control and incorporation of changes to the specifications, design, or coding that may occur during test contained in the Test Plan?

PERFORMANCE

1.
If a performance criterion is associated with any step of the test procedure, is that criterion explicitly stated along with the operator instructions for that step?

April 1990

IT2 - Test Procedure and Function Checklist

RELIABILITY

1.
Has the test equipment been validated and calibrated?

2.
Has the test software been validated?

3.
Have all input data been verified?

4.
Is sufficient test data collected and documented to support estimation of the software’s reliability?

TESTABILITY

1.
Does the test procedure identify all of the equipment, software, and personnel required for testing?

2.
Can the test procedure be performed with minimal support from the development team?

3.
Is the test procedure consistent with the capabilities of the test facilities?

4.
Is the testing schedule described to a sufficient level of detail?

5.
Does the test procedure call for the participation of independent quality assurance personnel to very testing activity?

6.
Does the test procedure call for independent testing?

TRACEABILITY

1.
Does the test procedure list all specifications, procedures, handbooks, or manuals required for operation?

2.
Is the traceability shown between the requirements and the acceptance test combinations?

3.
Are the criteria for success traced to requirements?

4.
Is the creator of each test case dataset identified?

PAGE
5

