Software Development Standards for the Guidance and Control Software Project

Kelly J. Hayhurst

Bernice Becher (Lockheed Martin Engineering and Sciences Corp.)

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681

This document was produced as part of a software engineering case study conducted at NASA Langley Research Center. Although some of the requirements for the Guidance and Control Software application were derived from the NASA Viking Mission to Mars, this document does not contain data from an actual NASA mission.

Preface

The NASA Langley Research Center has been conducting a series of software error studies in an effort to better understand the software failure process and improve development and reliability estimation techniques for avionics software. The Guidance and Control Software (GCS) project is the latest study in the series (ref. 1). This project involves production of guidance and control software for the purpose of gathering failure data from a credible software development environment. To increase the credibility and relevance of this study, guidelines used in the development of commercial aircraft were adopted. The use of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, "Software Considerations in Airborne Systems and Equipment Certification," is required by the Federal Aviation Administration (FAA) for developing software to be certified for use in commercial aircraft equipment (ref. 2).

This document is one part of the life cycle data required to fulfill the RTCA/DO-178B guidelines. The life cycle data are used to demonstrate compliance with the guidelines by describing the application of the procedures and techniques used during the development of flight software and the results of the development process. The life cycle data required to fulfill the DO-178B guidelines consists of the following:

· Plan for Software Aspects of Certification

· Software Development Standards
· Software Requirements Document
· Software Design Description

· Software Source Code
· Executable Object Code

· Software Verification Plan
· Software Verification Procedures and Cases
· Software Verification Results
· Software Quality Assurance Plan
· Software Quality Assurance Records
· Problem and Action Reports
· Software Configuration Management Plan
· Software Configuration Management Records
· Software Configuration Index

· Software Accomplishment Summary

A GCS implementation (code which fulfills the requirements outlined in the Software Requirements Data) runs in conjunction with a software simulator that provides input based on an expected usage distribution in the operational environment, provides response modeling, and receives data from the implementation. For the purposes of the project, a number of GCS implementations are being developed by different programmers according to the structured approach found in the DO-178B guidelines. The GCS simulator is designed to allow an experimenter to run one or more implementations in a multitasking environment and collect data on the comparison of the results from multiple implementations. Certain constraints have been incorporated in the software requirements due to the nature of the GCS project. Further information on goals of the GCS project are available in the Plan for Software Aspects of Certification.
Contents

1

1. Introduction

1.1 The Software Development Process for the GCS Project
1

2. Software Requirements Standards
3

2.1 Development of the Requirements Documentation (Methods, Notations, and Constraints)
4

2.2 Review of the Software Requirements
5

2.3 Derived Requirements and Modifications
6

3. Software Design Standards
7

3.1 Design Methods, Rules, and Tools
7

3.2 Design Documentation
9

4. Instructions to Programmers Regarding the Transitional Design Phase
11

5. Software Code Standards
12

5.1 Programming Language
13

5.2 Code Presentation and Documentation
13

6. Instructions to Programmers Regarding the Coding Phase
15

7. Instructions to Programmers Regarding the Integration Phase
16

8. Instructions for Using CMS
16

8.1 CMS Description
17

8.2 Basic CMS Commands
19

9. Problem and Change Reporting
20

9.1 Problem Reporting for Development Products
20

9.2 Instructions for Problem and Action Reports
22

9.3 Number System for the Problem and Action Reports
23

9.4 Completing the Problem Report Form
27

9.5 Completing the Action Report Form
28

9.6 Problem Reporting for Support Documentation
29

9.7 Completing the Support Documentation Change Report Form
31

9.8 Completing the Continuation Form
31

10. Collecting Effort Data
34

11. Communication Protocol
34

11.1 Conventions for Communication between Programmers and System Analyst
36

11.2 General Rules Regarding Topics and Replies
36

11.3 Optional Notification From Within VAX Notes Using MAIL Utility
41

11.4 Using Text Files for Note Creation
41

12. Documentation Guidelines
43

Appendix
45

List of Figures

1. Graphical Symbols Used in the GCS Specification's Flow Diagrams
5

2. Module Header Block and Revision History
14

3. GCS Problem Report Form
24

4. GCS Action Report Form
25

5. Flow of Problem Reporting Process for the Development Products
26

6. Support Documentation Change Report Form
30

7. Flow of Change Reporting Process for the Support Documentation
32

8. Report Continuation Form
33

9. Example of a Conversation Between the Programmer (PG) and System Analyst(SA)
42

10. Directory of All Notes in the Conversation Example
43

11. Form for Recording Effort Data from Programmers
46

12. Form for Recording Effort Data from Verification Analysts
48

13. Form for Recording Effort Data from the SQA Representative
50

14. Form for Recording Effort Data from the Configuration Manager
51

15. Form for Recording Effort from the System Analyst
52

List of Tables

1. DO-178B Life Cycle Data Required for the GCS Project
17

2. Configuration Identification for the DO-178B Life Cycle Data
18

3. CC1 Development Products
21

4. CC1 Support Documentation
21

5. CC2 Records, Results, and Reports
21

6. Information for Artifact Identification
28

7. Specification Section Names
38

1. Introduction

According to the Requirements and Technical Concepts for Aviation RTCA/DO-178B document entitled Software Considerations in Airborne Systems and Equipment Certification (ref. 2), the purpose of the software development standards is to "define the rules and constraints for the software development process." To that extent, this document contains the Guidance and Control Software (GCS) project standards for the development of the software requirements, software design, and implemented code. These standards include constraints and rules on defining the software requirements, and designing and coding the software. These standards, along with the software requirements, will set the basis for evaluating actual project results with expected results.

This document also contains other project standards including communication protocol among the project participants and problem and action reporting procedures. It is hoped that this document will serve as a handbook for the project participants, especially those individuals responsible for the design and coding of the software. All project participants are expected to become familiar with and follow the standards set forth in this document. To provide a basis for understanding the various project standards and procedures, the following section gives an overview of the GCS project and the software development process.

1.1 The Software Development Process for the GCS Project

For the GCS project, a GCS implementation is defined to be code which fulfills the requirements outlined in the Software Requirements Data, commonly referred to in this project as the GCS specification. The current GCS project involves the development of separate implementations of the GCS where the development and verification activities comply with the RTCA/DO-178B guidelines which are required by the Federal Aviation Administration (FAA) for developing software to be certified for use in commercial aircraft equipment and with project standards (as defined in this document). Three of the major purposes of this project are to (1) collect data on the faults that occur during the software development process, (2) collect data on faults that occur in operational guidance and control software, and (3) make observations on the effectiveness of a development process that complies with the DO-178B guidelines. Special procedures and forms for tracking effort and error data have been developed to capture information in addition to that required by the DO-178B guidelines. These procedures are described later in this document.

A GCS implementation will run in conjunction with a software simulator that provides input based on an expected usage distribution in the operational environment, provides response modeling, and receives data from the implementation. The GCS simulator is designed to allow an experimenter to run one or more implementations in a multitasking environment and collect data on the comparison of the results from multiple implementations. Certain constraints have been incorporated in the software requirements and project standards (especially standards regarding communication protocol) due to the nature of the GCS project. Further information on goals of the GCS project is available in the Plan for Software Aspects of Certification.

The GCS project was started originally at Research Triangle Institute (RTI) (ref. 1). The first task in the project was to develop the specification document for the guidance and control software application. Engineers at RTI produced the original requirements document for the guidance and control software, called the Guidance and Control Software Development Specification. The GCS specification contains more than just the software high-level requirements. The GCS specification embodies high level requirements and some level of software design. Thus, some of the necessary refinement of the software requirements has already been accomplished in the GCS specification. The chapter titled "Software Requirements Standards" describes the methods used to generate the original GCS requirements document and overviews the methods used in the original verification effort for the requirements.

Once the GCS specification was generated, a decision was made to have RTI use the DO-178A guidelines (ref. 3) as a model for the software development process. Six people were divided into three different teams of 2 people each to develop three implementations. Each team, consisting of a programmer and verification analyst, was tasked to develop a single GCS implementation according to the DO-178A guidelines. The three GCS implementations were assigned planetary names: Mercury, Earth, and Pluto. The documentation for each implementation refers to the assigned planetary name. In addition to the programmer and verification analyst teams, other project personnel were assigned the roles of Software Quality Assurance (SQA) representative, system analyst (responsible for the software requirements), and configuration manager to work with the three implementation teams. The Plan for Software Aspects of Certification contains more details on the role of all project participants.

Because the GCS specification had already been generated, the DO-178A guidelines were to be applied to the development process starting with the design of the software implementations from the existing specification. The software development processes used by RTI included the following processes:

• software design,

• software coding, and

• integration.

All three RTI-developed implementations of the GCS went through the design and coding processes and were at various stages of the integration process when they were delivered to NASA. After consultation with the FAA, a decision was made to extensively review and revise the GCS specification and restart the software development process under the DO-178B guidelines, which were released very soon after the GCS implementations were delivered. Upon delivery to NASA, new programmer and verification analyst teams were assigned along with support from new System Analysis, SQA, and Configuration Management personnel.

Due to the transitioning of the project from RTI to NASA along with new focus on the DO-178B guidelines, the decision was made to revisit some of the original development activities and to develop only two implementations. In particular, the following activities are to be accomplished in addition to the regular life cycle development activities:

1.
review and revision of the existing GCS specification, which will result in version 2.2 of the document,

2.
definition of any additional information that needs to be specified to fulfill the requirements for the Software Requirements Data as described in Subsection 11.9 of DO-178B,

3.
review and revision of the existing documentation describing the software development process to conform with the guidelines set forth in DO-178B (i.e. revising the RTI-generated Plan for Software Aspects of Certification, Software Verification Plan, Software Configuration Management Plan, Software Quality Assurance Plan, and the Software Development Standards), and

4.
modification of each existing design (developed at RTI) by the newly designated programmer to bring the design up to version 2.2 of the GCS specification.

Thus, the software development processes for the in-house GCS project will include the following processes:

transitional software requirements development (focusing on the review and modification of the existing software requirements),

transitional software design,

software coding, and

integration.

The following chapter describes the methods used to develop the original GCS specification and the methods and standards for modifying the requirements. Standards for the design process are described in the chapter titled "Software Design Standards". The standards for the coding process are described in the chapter "Software Code Standards". Instructions to the programmers regarding their role in the various development processes and general purpose instructions to all project participants for data collection, communication, and configuration management are discussed in the remaining chapters. Note that there may be changes to various aspects of the development process (such as the software requirements or project standards) as the project progresses. New procedures and standards may be issued periodically and project documentation updated as appropriate.

2. Software Requirements Standards

According to DO-178B, the software requirements process uses the system requirements and system architecture to develop the high-level requirements for the desired software (ref. 2). The objectives of this process are to ensure the clarity, consistency, and completeness of those requirements allocated to the software. For the GCS project, however, there is no real system to be developed nor documentation of real system requirements. Consequently, there also is no system safety assessment which is an important aspect of any development process that needs to comply with the DO-178B guidelines. The GCS project started with the definition of software requirements for a specific component of a guidance and control system. Without system requirements, certain assumptions must be made in the development of the software requirements. Lack of system requirements also impacts the extent to which the project will comply with the DO-178B guidelines since no traces can be made from the software requirements back to the system requirements and safety assessment.

The following section describes the development of the original specification for the software, including the methods, rules, and tools used in the development of the high-level requirements.

2.1 Development of the Requirements Documentation (Methods, Notations, and Constraints)

The original requirements for the guidance and control application were reverse-engineered during the mid 1980's by engineers at RTI from a software program written in the late 1960's to simulate the Viking lander vehicle approaching the surface of the planet Mars (ref. 1). The definition of the software requirements focused on two primary needs for the software: (a) to provide guidance and engine control of the lander vehicle during its terminal phase of descent onto the planet's surface and (b) to communicate sensory information to an orbiting platform about the vehicle and its descent. As discussed above, the GCS specification embodies high-level requirements and some level of software design.

The RTI engineers used a version of the structured analysis for real-time system specification methodology by Hatley and Pirbhai (ref. 4) to help create the original GCS specification. In general, the structured analysis method is based on a hierarchical approach to defining functional modules and the associated data and control flows. Structured analysis was chosen as the specification method as opposed to a formal specification language for two reasons: (1) to keep the specification development activity practical and, (2) to use a specification method which is currently used in industry (ref. 5). The Computer Aided Software Engineering (CASE) tool, teamwork (ref. 6), was used later in the project to refine some of the data and control flow diagrams in the GCS specification. Beyond the use of teamwork and the structured analysis approach to system specification, no constraints were placed on the use of requirements development tools.

The specification document includes data context and flow diagrams, control and context flow diagrams, and process and control descriptions. Figure 1 defines the graphical symbols used in the specification's data flow and control flow diagrams, respectively. As stated in the GCS specification, the data flow diagrams describe the processes, data flows, and data and control stores. The data context diagram is the highest-level data flow diagram and represents the data flow for the entire software component.

The control flow diagrams describe processes, data condition and control signal flows, and data and control stores. The data condition and control signal flows are depicted using directed arcs with broken lines and simply show the logic involved in the system. Signal flows between the control flow diagram and the control specification have a short bar at the end of the directed arc. The control flow diagrams contain duplicate descriptions of the processes represented on the data flow diagram. The control context diagram representing the most abstract control flow is similar to the data context diagram.

The control specifications describe the control requirements of a system. These specifications contain the conditions when the processes detailed in the data and control flow diagrams are activated and de-activated. A Data Requirements Dictionary, containing definitions for both data and control signals, is also included as part of the GCS specification.

The GCS project is targeted for VAX/VMS systems; that is, the GCS implementations and the simulator are designed to run on a VAX/VMS system. Consequently, all software requirements, standards, and instructions for the project assume a VAX/VMS system as the host system for the GCS implementations. A more detailed description of the software life cycle environment, including a description of the host operating system, can be found in the Software Configuration Management Plan .

Figure 1. Graphical Symbols Used in the GCS Specification's Flow Diagrams

2.2 Review of the Software Requirements

Although formal review, according to the DO-178B guidelines, of the GCS specification is beyond the scope of the project, steps were taken by RTI during the development of the original GCS specification to assure that the specification was as complete, precise, and verifiable as possible. Conducting peer reviews and informal walk-throughs and coding a prototype implementation were among those steps. During these activities, the changes made to the specification were recorded and categorized. More discussion on the methods used in the verification of the original specification is in the GCS Development Specification Review Description (ref. 5).

Version 2.0 of the GCS specification, that resulted from those verification activities, was more than 122 pages of text, including appendices concerning the format of the specification, implementation notes, background on methods of integration, and a data requirements dictionary. The GCS specification was written for an experienced programmer with two or more years of full-time industrial programming experience. The GCS specification was intended to be implemented using a scientific programming language. In fact, the implementations to be developed for the GCS project are required to be coded in the FORTRAN language. A background in mathematics, physics, and numerical integration is considered beneficial in understanding the software requirements. A similar background is also considered beneficial for individuals required to verify a GCS implementation. Version 2.0 of the specification was released to the original programmers at RTI to start the development of their implementations. Version 2.1 of the specification was later released after a significant number of modifications were made.

During the transitional requirements development process of the project, version 2.1 of the software requirements was assessed in light of the DO-178B guidelines, especially with respect to the required contents of the Software Requirements Data. The Software Requirements Data, as described in Subsection 11.9 of DO-178B, contains the definition of the high-level requirements for the software component. After a review of and significant modification to the physics embodied in the software requirements are accomplished, version 2.2 of the GCS specification, which is the Software Requirements Data for the purposes of the GCS project, will be released to the new programmers, signaling the end of the transitional requirements process and the start of the transitional design process.

2.3 Derived Requirements and Modifications

According to DO-178B, the GCS specification is classified under control category 1 -- which means that the project must provide a formal system of problem reporting, change control, and change review for that data. All changes to the GCS specification, along with the other project support documentation, are made through a system of Support Documentation Change Reports. All questions raised by any member of the development team regarding the GCS specification are brought to the system analyst. The system analyst reviews all questions and determines if changes to the specification are required. When changes are deemed necessary, the system analyst submits a description of the necessary modification to the SQA representative and project leader for review. The chapter "Problem and Change Reporting" gives a more detailed description of the procedures and forms used for tracking, reviewing and approving changes to the GCS specification.

Once the modification is approved, a copy of the modification description is distributed to all project participants. The programmers are required to consider the impact of each modification to the software requirements on their implementation and make any appropriate changes to their software design and code. Similarly, the verification analysts should determine the impact of any modifications on the verification activities, especially test cases and requirements in the traceability data, and make any necessary corrections to the appropriate artifacts.

Derived requirements will be recorded as the verification analysts document the software requirements and their corresponding verification criteria for the traceability data. The programmers will also identify requirements derived during the design and coding processes in their software design descriptions and code, respectively. As derived requirements are identified, they will be added to the traceability data. Derived requirements will also be added to the traceability data as they are identified during the review and analysis of the software design and code, and these requirements will be verified through the remainder of the development processes. Since there is no system requirements or system safety assessment, there is no other mechanism other than the traceability data to account for the derived requirements.

The following chapter describes the software design standards defined for the GCS project.

3. Software Design Standards

The purpose of the software design process is to refine the software high-level requirements into a software architecture and the low-level requirements that can be used to implement the source code. The software design standards are provided to define the methods, rules, and tools to be used in the development of the software architecture and low-level requirements, as described in Subsection 11.7 of DO-178B. These standards should enable the software implementations to be uniformly designed.

During the transitional design process of the GCS project, the programmers are required to develop detailed software designs from existing GCS designs, as delivered from RTI. A detailed design should be a complete statement of the software low-level requirements that addresses exactly what needs to be accomplished in order to fulfill the objectives stated in the GCS specification; that is, the detailed design should contain an algorithmic solution. The low level requirements should be directly translatable into source code, with no further decomposition required.

3.1 Design Methods, Rules, and Tools

For the GCS project, the design of a GCS implementation should be developed using the structured analysis and design methods described by Hatley and Pirbhai (ref. 4), DeMarco (ref. 7) or Ward and Mellor (ref. 8). Further, the designer is required to use the Computer Aided Software Engineering (CASE) tool, teamwork (ref. 9), to develop the design. Teamwork is a product of (and registered trademark of) Cadre Technologies, Inc. The teamwork tool is used to aid in the structured design of the applications, and certain parts of the output from teamwork will be required for design and code reviews. Teamwork is composed of several tools that are available to the designer. The components of teamwork include, but are not limited to, the following components:

SA --- The base-line structured analysis tool,

RT --- An extension of SA that allows description of real-time systems, and

SD --- A parallel tool that follows the Ward and Mellor approach.

The designer may choose to use any of these tools. If the SA tool is chosen, the design will consist of Data Flow Diagrams (DFDs) that provide a representation of a system focusing on the data passed between processes and Process Specifications (P-Specs) that provide procedural descriptions of primitive processes (processes that cannot be further decomposed into more detailed DFDs). If the RT extension is used, the design will also contain Control Flow Diagrams (CFDs) and Control Specifications (C-Specs). The CFDs provide an additional representation of the system focusing on the control and data condition signals passed between processes, and the C-Specs relate input and output control flows, turn processes on or off, and trigger changes in the operating mode of the system. If the design is developed with the SD tool, the design will consist of Structure Charts that depict the partitioning of a system into modules, showing the hierarchy and organization of these modules and the communication interfaces among them, and Module Specifications (M-Specs) that describe the function of the modules represented in the design (ref. 9). Although the P-Specs and M-Specs contain the detailed description of the algorithms for the code, these specifications should be limited in length to a) encourage a modular design and code and b) aid in review and verification. The constraints listed below should be followed when using teamwork to develop the GCS design.

No P-Spec, C-Spec, or M-Spec should be greater than five pages in length when printed.

The body section of the P-Specs and M-Specs may contain any combination of structured English and pseudo-code to provide a concise and unambiguous description of the process or module.

The lists of input and output variables should be directly traceable to the specification. Any flows should be broken down to the elements as shown in the Data Requirements Dictionary in the GCS specification before entering the P-Spec, C-Spec, or M-Spec.

Interrupts may not be used.

Before printing the copy to be analyzed during the design review, a complete "balance'' check should be conducted on the model. No changes should be made to the model between the last "balance'' and the print.

In general each programmer is expected to follow good software engineering practices in the construction of the design; but, the design standards for this project do not extend beyond the constraints listed above. For example, no restrictions have been issued on the complexity of the design, such as limiting the number of nested calls or entry and exit points in the code components. However, each programmer should be mindful that this project involves the development of software that is considered to be Level A software (in the terminology of DO-178B), where anomalous behavior of the software could cause or contribute to a catastrophic failure condition for the vehicle. Excessive complexity of the design and code magnify the difficulty in verification of the software and, hence, could potentially increase the possibility of faults remaining in the software after verification.

In addition, no other design standards have been defined regarding naming conventions, scheduling, global data, or exception handling beyond those requirements set forth in the GCS specification. Although no constraints in terms of project standards have been placed on the use of event-driven architectures, dynamic tasking, and re-entry, the use of such methods in a GCS design should be discussed and the rationale for their use clearly explained in the design documentation. Further, no formal constraints have been placed on the use of recursion, dynamic objects, data aliases and compacted expressions. However, as stated above, the use of such techniques should be clearly discussed and justified in the design documentation.

As described in Paragraph 5.2.2 of DO-178B, a Design Description (Subsection 11.10) is a primary output of the software design process. The following section describes the outline of the information that should be contained in the design documentation.

3.2 Design Documentation

As discussed in Subsection 11.10 of DO-178B, the design description defines the software architecture and the low-level requirements that satisfy the software high-level requirements. The design document outline shown below describes the required contents of the detailed design description for each GCS implementation. This documentation includes introductory and overview commentary on the design generated with the teamwork tool. The document produced from this outline will be analyzed during the design review and will also be used to trace changes in the design to the code. As the software code is developed and modified, the design and the code will be modified to be kept consistent. Thus, it is important to have a carefully documented description of the software design.

The design document should follow a format loosely similar to that of the GCS specification or the Hatley book on real-time system specification (ref. 4). Note that the outline given here is a suggested outline and may be rearranged or modified by the programmer as desired. However, the content of the design document should comply with the requirements stated in DO-178B.

I. Introduction to Name of implementation

a) Top Level Description

This subsection should give a brief overview of the context of the application (e.g., simulates the on-board navigational code for a planetary lander, etc.). This subsection should also provide a brief overview of the organization of the design.

b) Comments on Method

This subsection should contain any comments regarding the philosophy or methods used during the design of the software. The tools used to generate the design (e.g., teamwork/SA and teamwork/SD) should be specifically stated.

II. Design Structure

As described in Subsection 11.10 of DO-178B, this portion of the design description should contain a detailed account of how the software satisfies the specified software high-level requirements, including algorithms, data structures, and how software requirements are allocated to processors and tasks. The descriptions of any algorithms used (including those that were not supplied in the GCS specification) should be contained in the teamwork design. The following information should be included to provide an overview of the detailed design. The teamwork design should be included in an appendix.

a) Data and Control Flow

This section should describe the data flow and control flow of the design. References should be given to the appropriate teamwork diagrams. Note that the data and control diagrams may be combined into single diagrams for each level.

b) Module Description

This section should provide the software architecture and low-level requirements, developed using the teamwork tool, that satisfy the requirements given in the GCS specification.

If the design is developed using the teamwork/SA tool, this subsection should contain a brief overview of the P-Specs in the design. Each P-Spec and its primitive process should share the same inputs and outputs. The body section of each P-Spec should contain a clear description of how each process transforms its inputs and its outputs.

If the design is developed using the teamwork/RT tool, this subsection should contain a brief description of the C-Specs in the design. The C-Specs should describe how the input and output control flows relate, how processes are turned on or off, and how changes in the operating mode of a system are triggered.

If the design is developed using the teamwork/SD tool, this subsection should contain a brief overview of the M-Specs in the design. This overview should include information about design modules that may be combined into larger code modules. The M-Specs should provide a one-to-one mapping to the processes in the teamwork diagrams. The body of each M-Spec should clearly describe the function of the module.

c) Scheduling

This subsection should provide an overview of the scheduling procedures. This subsection should also describe any use of system support utilities, including GCS_SIM_RENDEZVOUS. References should be made to the appropriate portions of the teamwork design.

d) Data Dictionary

This subsection should contain the data dictionary for the teamwork design. This data dictionary should include all of the data dictionary entries in the GCS specification and any additional variables contained in the design that represent flows between processes. This subsection may also contain all the information pertaining to resource limitations, such as memory and timing constraints.

e) Derived Requirements

This subsection should identify any derived requirements that resulted from the software design process.

III. References
References used for the design and anticipated for the construction of the code should be listed here. This may take the form of a bibliography. The references should include one to the GCS specification.

With respect to the DO-178B guidelines for the design descriptions, discussions of partitioning methods, previously developed software components, and deactivated code are not applicable to the GCS project, and, consequently, are not contained in the design descriptions. Further, since the project does not have system requirements or a corresponding safety assessment, a discussion of design decisions that could be traceable to those requirements is not contained in the design documentation.

4. Instructions to Programmers Regarding the Transitional Design Phase

Subsection 5.2 of DO-178B describes the software design process. Each GCS programmer is responsible for complying with the guidelines in that section within the scope of the GCS project. This chapter describes the responsibilities of the programmers during the transitional design phase of the software development process for the GCS project. Within this transitional phase, special instructions for modifying the existing design have been included to provide guidance to the project programmers due to the special circumstances of this period.

During the transitional design phase, the new programmers are responsible for :

1.
Modifying the original design of their implementation (developed at RTI) so that the new detailed design meets the requirements of the most current version of the GCS specification and the standards set forth in this document in the chapter "Software Design Standards". As described in the design standards, the CASE tool, teamwork, should be used to update the design. Only those modifications to the detailed design to correct functionality or eliminate unnecessary design detail should be made; that is, programmers should not make changes in the design simply because that is not the design they would have chosen or because they believe the design is inefficient. There should be a reasonable justification for each modification. All additional documentation as described in the section on design documentation also should be generated.

2.
Submitting any questions they may have about the specification to the system analyst. The software package, VAX Notes (ref. 10), should be used to ask questions about the specification (so there is a record of the questions and answers). See the section on the use of VAX Notes in the chapter "Communication Protocol."

3.
Submitting the detailed design description for configuration management. When the design description is complete, each programmer should contact the configuration manager so that the design description can be placed into the appropriate VAX Code Management System (CMS) (ref. 11) library. See the chapter "Instructions for Using CMS" for a description of some of the basic commands and procedures for using CMS on this project.

4.
Providing a copy of the design description to the project leader after submitting the design description for configuration management. A copy of the design description placed into a binder with sections clearly marked would be helpful. The project leader will contact the participants in the review to schedule the review sessions.

Each programmer is required to participate in the Design Reviews for his implementation. The procedures for conducting the design reviews and the description of the role that the programmer plays during the reviews are described in the Software Verification Plan. The procedures for the conduct of the Design Reviews will be distributed to all appropriate project personnel (including the programmers) prior to any reviews. Each programmer must respond to all Problem Reports issued during the design reviews using the action reporting procedures described in the chapter "Problem and Change Reporting". Questions about these procedures can be directed to the SQA representative or project management.

5. Software Code Standards

The purpose of the software coding process described in Subsection 5.3 of DO-178B is to develop source code that is traceable, verifiable, consistent, and that correctly implements the low-level requirements. As described in Subsection 11.8 of DO-178B, the software code standards define the programming languages, methods, rules and tools to be used to generate the GCS source code. The following standards describe the programming language to be used and constraints on the coding process. For the GCS project, the code standards are primarily focused on presentation and documentation (comments) requirements.

5.1 Programming Language

The GCS specification was written with the assumption that a GCS implementation would be coded in the FORTRAN language. Although the software could be implemented in a programming language other than FORTRAN, for this GCS project, the GCS implementations should be coded in VAX/VMS FORTRAN since the host system for the software is a VAX/VMS system. VAX FORTRAN (ref. 12) is an implementation of the full FORTRAN-77 language that conforms to the American National Standard FORTRAN, ANSI X3.9-1978. All code must be written in VAX FORTRAN; no assembly language or other language is permitted. Programmers should use structured programming techniques whenever practical and should not use unconditional GOTO statements. No further limits have been placed on the use of the features of the VAX FORTRAN language, including the use of VAX FORTRAN extensions. The VAX/VMS FORTRAN compiler will be used to generate the object code which will then be linked into an executable image.

5.2 Code Presentation and Documentation

For this GCS project, the programmers are required to follow a few simple guidelines with respect to the presentation and documentation of the source code. With respect to presentation standards (line length, indentation, blank lines, etc.), programmers are only required to make the source code easily readable to aid in verification and future modification. Programmers are encouraged to make generous use of indentation and blank lines, but no specific constraints are imposed. With respect to documentation, each programmer should add descriptive comments to the source code wherever appropriate. The comments should provide sufficient information to allow changes to be made completely, consistently, and correctly while retaining the structure. The following items also are required for the documentation of the source code: module header blocks, a revision history (starting after the first Code Review), and a system for denoting modifications. Below is a brief description of these items.

Module Header Block -- Header blocks should be used at the beginning of each module to provide an overall summary of that module. Figure 2 shows a general format for the module header. Each programmer may choose the exact style of the header block; that is, the style does not have to conform precisely to the style presented in Figure 2, but all of the information should be included.

Revision History -- All modifications made to each module should be summarized in a section called revision history located directly under the header block for that module. Each modification to a module should be labeled with a version number, v#. For example, the first modification to a module would be labeled v1 and the second modification would be v2. The revision history also should contain the Action Report (AR) number associated with each change made to the module, the date the change is made, the name of the person implementing the change, and a description of the change.

Notation of Modifications -- Once the source code is submitted for code review, no code that is to be modified in response to a Problem Report may be deleted. The source code that is to be modified should be commented out (instead of deleted) and the new code added. The beginning of all areas of changes should be noted clearly with a comment line, as shown below, containing the following:

!+

! v# Begin changes for AR#<action report number>. <short description of change>

!-

The end of change areas should be similarly marked by an "End Change'' comment line.

!!!

!

!
MODULE NAME:

!
PURPOSE:

!
ARGUMENTS:

!
NOTES:

!
AUTHOR:

!
IMPLEMENTATION NAME:

!
DATE FIRST SUBMITTED FOR CONFIGURATION MANAGEMENT:

!

!!!

!

!

REVISION HISTORY

!
v# , <date>, <author name>, <description, including AR#>

!

!!!

Figure 2. Module Header Block and Revision History

Naming conventions for subprograms, variables, and constants should be understandable (to aid traceability and verification) and conform to requirements in the GCS specification. The specification states specific requirements regarding the labeling of global data stores. The specification also places a constraint on the use of variables in addition to the global data store variables (see the GCS specification for further information). In addition to these constraints, no special coding tools should be used to generate the code. Beyond those stated here, no further constraints have been imposed on the coding process.

6. Instructions to Programmers Regarding the Coding Phase

This chapter describes the responsibilities of the programmers during the coding phase of the software development process. As stated previously, the source code should implement the low-level requirements and conform to the software architecture as defined in the software design as stated in Subsection 5.3 of DO-178B. The source code should also comply with the software code standards and be traceable to the design description.

During the coding process, each programmer should:

1.
Generate source code that implements the detailed design description and conforms to the Software Coding Standards defined above.

2.
Document, as described in Subsection 11.11 of DO-178B, the instructions for generating the object code from the source code and loading any data files that are necessary in addition to GCS_SIM_RENDEZVOUS. This documentation should also address any tools to be used to construct or manage the code. A template and specific instructions on using the VAX Module Management System (ref. 14) to construct the code will be provided to the programmers along with specific instructions for generating the object code. The programmers are not required to provide instructions for linking the code.

3.
Submit the source code for configuration management into the CMS library (by contacting the configuration manager) when development is complete and the code cleanly compiles. For the GCS project, the programmers are not permitted to link or execute their code.

4.
Contact the project leader when the source code is ready for Code Review. The project leader will contact the participants in the review to schedule the review sessions.

Each programmer is required to participate in the Code Reviews for his implementation. The procedures for conducting the code reviews and the description of the role that the programmer plays during the reviews are described in the Software Verification Plan. The procedures for the conduct of the Code Reviews will be distributed to all appropriate project personnel (including the programmers) prior to any reviews. Each programmer must respond to all Problem Reports issued during the code reviews using the action reporting procedures described in the chapter "Problem and Change Reporting". Each programmer is also responsible for tracing any problems found in the code back to the design. The design description should be kept consistent with the source code.

In addition, it is critical that the programmers adhere to the constraints on communication among programmers and among programmers and verification analysts. Programmers should not discuss the GCS specification or their implementations, in general, with the other programmers or verification analysts. See the chapter concerning communication protocol for further direction. Questions about these procedures can be directed to the SQA representative or project management.

7. Instructions to Programmers Regarding the Integration Phase

The software integration process is discussed in Subsection 5.4 of DO-178B. The programmers do not have a large role to play during this phase of the development process. During this phase, the programmers should respond to all Problem Reports that are issued to them as a result of the verification activities that are conducted. The Software Verification Plan describes in detail the verification activities appropriate for this phase of the development process. As stated above, each programmer is responsible for tracing any problems found in the code back to the design, so that the design description is kept consistent with the source code.

8. Instructions for Using CMS

This chapter provides some basic information on the use of the VAX DEC/Code Management System (CMS) as a tool to aid in the configuration management activities for the GCS project. According to Subsection 7.2 of DO-178B, configuration management should be provided throughout the software development process for configuration identification, change control, baseline establishment, and archiving of the software life cycle data. For the GCS project, CMS will be used for the configuration management of the DO-178B life cycle data shown in Table 1. All participants on the GCS project should become familiar with the basic concepts of CMS since most of the life cycle data will be managed using this tool. Details of the configuration management process for the GCS project can be found in the Software Configuration Management Plan.

An important element of configuration management is establishing the configuration identification for all of the elements that make up the life cycle data. A configuration item is defined in DO-178B as one or more components that are treated as a unit for configuration purposes. Paragraph 7.2.1 of DO-178B further states that each configuration item should be uniquely labeled. For the GCS project, a number of elements of the life cycle data may be combined into a single configuration item, while other elements of the life cycle data may be decomposed into separate configuration items. The management of the life cycle data will be based on the unique labels used for configuration identification. Table 2 shows the labels for the configuration items that comprise the DO-178B life cycle data for the GCS project. Since many of the configuration items are implementation specific, the labels of the individual configuration items should refer to the specific implementation, as appropriate. For example, the source code for the Mercury implementation should be referred to as "Source Code for Mercury". All participants of the project should refer to the project's artifacts by the appropriate label for each configuration item. The labels given in Table 2 for the configuration items will be used as the titles for the project documentation.

Table 1. DO-178B Life Cycle Data Required for the GCS Project

Life Cycle Data
Subsection Reference

in DO-178B
Responsibility

Plan for Software Aspects of Certification
11.1
Project Leader

Software Development Plan
11.2
Project Leader

Software Requirements Standards
11.6
Project Leader

Software Design Standards
11.7
Project Leader

Software Code Standards
11.8
Project Leader

Software Accomplishment Summary
11.20
Project Leader

Software Verification Plan
11.3
Verification Analysts

Software Verification Cases and Procedures*
11.13
Verification Analysts

Software Verification Results*
11.14
Verification Analysts

Software Quality Assurance Plan
11.5
SQA Representative

Software Quality Assurance Records*
11.19
SQA Representative

Problem Reports*
11.17
SQA Representative

Software Configuration Management Plan
11.4
Configuration Manager

Software Configuration Management Records*
11.18
Configuration Manager

Software Life Cycle Environment Configuration Index
11.15
Configuration Manager

Software Configuration Index*
11.16
Configuration Manager

Design Description*
11.10
Programmer

Source Code*
11.11
Programmer

Executable Object Code*
11.12
Programmer

Software Requirements Data
11.9
System Analyst

* These life cycle data will be implementation specific.

8.1 CMS Description

CMS is an on-line library system that helps track the software development process (ref. 11). A CMS library is actually a VMS directory that contains specially formatted files. In general, CMS works by storing files called elements in a library, tracking changes made to these files, and monitoring access to the files. A file can contain text, source code, object code, test cases, etc. Each configuration item shown in Table 2 will be placed in a unique CMS library. The configuration manager for the project will establish these libraries and has primary access to all CMS libraries. Access to the configuration items will be carefully controlled to help preserve the integrity of the life cycle data. Most project participants, including programmers and verification analysts, are not allowed direct access to the CMS libraries. The Software Configuration Management Plan contains more information on the change control procedures for the GCS project and the baselines for the life cycle data.

The basic structural unit of the CMS library is called an element. An element consists of a file and all of the versions of that file. A generation of an element is one specific version of that element. Elements can be combined into a group, consisting of the selected elements and all of their generations, that can be manipulated as a single unit. For example, an element can be a single test case developed to test a functional module and a group could be all of the test cases to test that module. Specific generations of elements can be clustered into a class and manipulated as a single unit. For example, the Post-Code Review class could represent the specific generations of elements that comprise the code resulting after the Code Reviews. The generation number for all of the elements of a class can be different, indicating that some elements have been changed more than others. Classes will be used to identify the life cycle data at specific phases in the development process.

Table 2. Configuration Identification for the DO-178B Life Cycle Data

Life Cycle Data
Labels for the Configuration Items

Plan for Software Aspects of Certification

Software Development Plan
Plan for Software Aspects of Certification

Software Requirements Standards
Software Development Standards

Software Design Standards

Software Code Standards

Software Accomplishment Summary
Software Accomplishment Summary

Software Verification Plan
Software Verification Plan

Software Requirements Traceability Data

Software Verification Cases and Procedures*
Software Verification Cases*

Software Verification Procedures

Software Verification Results*
Software Verification Results*

Software Quality Assurance Plan
Software Quality Assurance Plan

Software Quality Assurance Records*
Software Quality Assurance Records*

Problem Reports*
Problem and Action Reports*

Support Documentation Change Forms

Software Configuration Management Plan
Software Configuration Management Plan

Software Configuration Management Records*
Software Configuration Management Records*

Software Life Cycle Environment Configuration Index
Software Configuration Index *

Software Configuration Index*

Design Description*
Design Description*

Source Code*
Source Code*

Executable Object Code*
Executable Object Code*

Software Requirements Data
GCS Specification

* These configuration items will be implementation specific.

8.2 Basic CMS Commands

Once an item has been placed under configuration control, there must be a valid justification to change it. CMS uses a system of reservations and replacements to manage the elements of a library. Since the configuration manager has the primary responsibility for the configuration management activities, the rest of the project participants need to know only a few basic commands to manage their life cycle data. All project participants should use the labels given in Table 2 when referring to specific configuration items. The following are basic CMS operations that project participants should learn. The Guide to VAX/DEC Code Management System (ref. 11) provides more information about the commands available for CMS.

Fetch -- A copy of one or more specified element generations is placed in a directory for use by the participant. No changes to the file within the CMS library will be made. For example, a copy of the element generations that comprise the version of code to be reviewed at the Code Reviews (Pre-Code Review version of an implementation) may be fetched for all of the participants in the Code Review to examine in preparation for the Reviews.

Reserve -- A copy of one or more specified element generations is placed in a directory so that it can be modified by the participant. The element is marked within the CMS library that it is reserved so that no one else may make changes to it during this time. After the file has been modified, the file should be returned to the library (using the Replace command) and the changes will be made to the library copy. As an example of this command, a programmer should reserve a particular element of source code in order to make a change to it in response to a Problem Report.

Replace -- An element that has been reserved can be replaced and, in doing so, any changes to the reserved version (which may be completely different from the replacement file) are put into the library for later use. A new generation of that element is created. In the example where the programmer has reserved an element to make a change in response to a Problem Report, the programmer should replace that element when he has completed the necessary change.

If an element needs to be changed, it must be reserved, changed, and replaced. Every action which results in a change to the CMS library (including use of the RESERVE and REPLACE commands) is recorded in a history file, along with the name of the person requesting the action, the date, and a comment. The report number for each change should be noted in the comment for that reservation. The original version, or generation, of the element is generation 1. After an element is reserved and replaced, it becomes generation 2. All previous generations of any element are easily retrieved from CMS. A particular class of elements can also be reserved.

9. Problem and Change Reporting

According to Paragraph 7.2.3 of DO-178B, there should be a mechanism within the software development processes for problem reporting, tracking and corrective action in order to:

• record process non-compliance with software plans and standards,

• record deficiencies of the outputs of the life cycle processes,

• record anomalous behavior of the software products, and

• ensure resolutions of these problems.

An effective problem reporting and tracking system is also extremely important in terms of the project goals, because one of the major objectives of the GCS project is to collect software error data which can be used to help assess the reliability of the resultant software and also assess the effectiveness of different development and verification methods for generating reliable software. In the context of the GCS project, a problem is a question or issue raised for consideration, discussion, or solution regarding some artifact of the software development process. In the software development process, problems can be identified in practically all life cycle data, including the software requirements, software design and code, and test cases.

The tables in Annex A of DO-178B specify that certain life cycle data are classified under Control Category 1 (CC1), which means that the project must provide a formal system of problem reporting, change control, and change review for that data. Other life cycle data are classified under Control Category 2 (CC2), indicating that formal problem reporting and change control procedures are not required for certification. For the purposes of developing an efficient problem and change reporting system, the DO-178B life cycle data has been divided into three different categories: development products (shown in Table 3); support documentation (shown in Table 4); and records, results, and reports (shown in Table 5). The life cycle data in the development products and support documentation categories are all under CC1. A unique problem and change reporting system has been established for each category under CC1.

9.1 Problem Reporting for Development Products

This section addresses the content and identification of problem reports for the development products, time frame for initiating problem reports, the method of closing problem reports, and the relationship to the change control activity in compliance with Subsection 11.4 of DO-178B. Note that the discussion of problem reporting procedures would typically appear in the Software Configuration Management Plan, according to DO-178B. However, since all project participants will be participating in the problem reporting, tracking and correction activities, repetition of the procedures in this document is appropriate.

The GCS Problem Report (PR) and Action Report (AR) forms, shown in Figures 3 and 4, respectively, will be used to document any problems and subsequent changes to the development products that arise during the development of the GCS implementations. The PR form is used to capture data concerning a possible problem that is identified during the software development process. The Problem Report contains

information about when (in the development process) the problem was identified,

the configuration identification of the artifact

a description of the problem (such as non-compliance with project standards or output deficiency), and

a history log for tracking the progress and resolution of the problem.

Table 3. CC1 Development Products

Design Description

Source Code

Executable Object Code

Table 4. CC1 Support Documentation

Plan for Software Aspects of Certification

Software Development Plan

Software Requirements Standards

Software Design Standards

Software Code Standards

Software Accomplishment Summary

Software Verification Plan

Software Verification Cases and Procedures

Software Quality Assurance Plan

Software Configuration Management Plan

Software Life Cycle Environment Configuration Index

Software Configuration Index

Software Requirements Data

Table 5. CC2 Records, Results, and Reports

Software Verification Results

Software Quality Assurance Records

Problem Reports

Software Configuration Management Records

All problems are investigated to determine if indeed a fault has been detected, in which case corrective action is taken and properly documented. Each identified fault is traced to determine the source where the fault was introduced. The AR form is used to capture relevant information about the action that is taken in response to a Problem Report. The Action Report will contain the configuration identification of the artifact affected and a description of a change that is made to an artifact in response to the Problem Report. Change control procedures, as described in the Software Configuration Management Plan, should be followed when the actual change is made to a configuration item. In the case that no change is required in response to the PR, the AR form will contain the justification for not making any changes.

9.2 Instructions for Problem and Action Reports

In general, a project participant who identifies, in the course of his prescribed activities, something in a development product that may be regarded as a problem (such as a violation of a software requirement or project standard) is responsible for initiating a Problem Report. However, during those verification activities where a Moderator is present, the Moderator will have the authority to determine whether issuing a Problem Report is appropriate. Figure 5 shows the flow of the problem reporting process, starting with the initiation of a PR to the final signature from the SQA representative indicating that the problem has been resolved. The following procedure, as shown in the flow chart, should be followed. During the development cycle,

1.
The initiator of the PR form fills out the form from Section 2 through Section 8. The Continuation form should be used if additional space is required for further explanation.

2.
The PR form is given to the SQA representative who assigns a PR number to it and logs this PR as an outstanding PR.

3.
The SQA representative keeps the original PR form and gives a copy to the most appropriate member of the development project for examination.

4.
The project member receiving a copy of the PR form should examine the appropriate artifact to determine if a change should be made. The response to the PR is made on an Action Report. If one or more changes are necessary, the change(s) are made and Action Reports describing the changes are written. When completing the Action Report, the respondent should contact the SQA representative to get the appropriate AR number. The respondent should refer to the AR number when requesting the appropriate configuration item from the configuration manager. This number should also be placed in the artifact comments when a change has been made. It is also important to make the change at this time.

5.
The project member will return the PR form to the SQA representative with either one or more Action Reports. The SQA representative checks that the report(s) are properly filled out and contain an adequate description of the change or an adequate explanation for making no change. At this time the SQA representative may deem it necessary to give a copy of the PR form to a different member of the project. This process may repeat itself until the SQA representative decides no further changes are necessary without further review by the PR initiator. It is the responsibility of the SQA representative to make sure that each problem is properly traced back to its origin. The SQA representative notes the sequence of the PR distribution in the history section of the original PR form.

6.
When all parties have responded to the PR, the SQA representative gives the original PR form and the Action Report(s) to the initiator. If the initiator feels that the problem is resolved, he signs off on the PR form and gives it to the SQA representative for final approval. If the initiator does not feel the problem is resolved, the initiator can seek further changes through the SQA representative. The SQA representative should make note of any problems in the History Log.

7.
The SQA representative then reviews the Problem and Action Reports. If further modification is deemed necessary, the reports should be distributed for further action. Upon final approval of the reports, the SQA representative notes the total number of changes and the total number of no changes on the original PR form and signs and dates it signifying resolution of the problem. The SQA representative then indicates the resolution of this PR on the master list of PRs. The Action Report forms should be attached to the original PR form.

8.
The SQA representative should notify the configuration manager that the configuration items that were modified have been approved and should be replaced in the CMS libraries.

9.3 Number System for the Problem and Action Reports

This section discusses the identification system for the Problem and Action Reports. Each GCS implementation will have its own set of Problem and Action Reports for the development products. The identification numbers for the Problem and Action Reports are of the form:

a.b where

a is the chronological number of the Problem Report

b is the chronological number of the action made in response to Problem Report "a"

The Problem Reports will be numbered: 1.0

2.0

3.0

...

The subsequent responses made (via Action Reports) to a Problem Report would be numbered:

<PR#>.1

<PR#>.2

<PR#>.3

...

For example, consider the third problem found with an implementation and suppose that 2 responses are made to the Problem Report. The Problem Report number would be 3.0 and the Action Report numbers would be 3.1 and 3.2

Figure 3. GCS Problem Report Form

Figure 4. GCS Action Report Form

Figure 5. Flow of Problem Reporting Process for the Development Products

9.4 Completing the Problem Report Form

In this section, instructions for completing the fields of the PR form are stated. Specific instructions or further explanation for each section of the PR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of attached pages. As many Continuation forms as necessary may be used.

1.
PR#: to be assigned by the SQA representative

2.
Planet: the name of the planet in whose development process this problem was identified

3.
Discovery Date: date when this problem was identified. It is important to issue a PR form at the time a problem is identified.

4.
Initiator & Role: name of the person who has identified the problem and the role (programmer, verification analyst, SQA representative, or system analyst) that person is fulfilling at the time of problem identification.

5.
Activity at Discovery: The development cycle for each GCS implementation can be decomposed into 6 distinct phases. In this section, indicate the phase by placing an X in the appropriate box that corresponds to the development phase in which this problem was identified and the specific activity that was being performed at that time. If the Other category is appropriate, please put an explanation in Section b of the Continuation form.

6.
Description of Problem: Provide an adequate description of the issue in question.

7.
Artifact Identification: Check the box that corresponds to the artifact under consideration when the problem was identified. The label for the configuration item should be given along with the information in Table 6 for each artifact. If a PR is being generated because the actual results from the execution of a test case did not agree with the expected results, the initial artifact under consideration would be the executable object code. The test case that surfaced the anomalous behavior would be identified in Section 8. If more space is needed, use Section b of the Continuation form.

8.
Test Case Identification: If the failure of a test case is the reason for initiating this PR, fill in the appropriate test case number, including its configuration item label, element name(s), and generation #; otherwise, indicate Not Applicable (N/A).

9.
History Log: to be filled in by the SQA representative. The SQA representative should log the sequence of dispersals of the PR, logging all ARs related to the PR and noting date of issuance, date of return, and the person receiving the PR form. The SQA representative should also note any anomalies in the resolution of the problem, such as disagreements in resolution between the initiator and the person making the change.

10.
Total # of Changes: to be filled in by the SQA representative when all Action Reports are closed and the problem has been resolved. A total of 0 indicates that no change was made.

Table 6. Information for Artifact Identification

Artifact
Information

Design Description
diagram, P-Spec #, C-Spec #, or M-Spec #

Source Code
element name & generation #

Executable Object Code
element name & generation #

Support Documentation
specific chapter, section, and table or figure reference, as appropriate

Other
be as specific as possible

11.
Total # of No Changes: to be filled in by the SQA representative when all Action Reports are closed and the problem has been resolved.

12.
Initiator Signature & Date: The person who initiates the PR should sign and date the original PR form here when the problem has been resolved.

13.
SQA Signature & Date: After checking that the problem is satisfactorily resolved and all necessary changes have been properly made, the SQA representative should sign and date the original PR form indicating closure of this PR.

9.5 Completing the Action Report Form

In this section, instructions for completing the fields of the AR form are stated. Specific instructions or further explanation for each section of the AR form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any attached pages. As many Continuation forms as necessary may be used.

1.
AR#: to be assigned by the SQA representative. The respondent should contact the SQA representative to get the appropriate AR number. When a change is indicated, the AR# can be incorporated in the comments which describe this change in the code or design.

2.
Planet: the name of the planet associated with the person making this action.

3.
Date of Action: date when this action was taken. In case of changes, it is important to complete the AR form at the time a change is being made.

4.
Respondent & Role: name of the person who is making the response and his role (programmer, verification analyst, SQA representative, or system analyst).

5.
Artifact Identification: Check the box that corresponds to the artifact in question. The information in Table 6 should be specified for each artifact. In case of responses made to the support documentation, the label for the configuration item should be cited. If more space is needed, use Section b of the Continuation form.

6.
Description of Action: provide a general description of the change that was made or an explanation of why no change is necessary. In case of responses made to the support documentation, the appropriate modification number from the Support Documentation Report Form should be cited.

7.
Was this action related to another action(s)?: Check the appropriate box to indicate whether this action is related to another action. If yes, indicate the relevant AR#(s).

9.6 Problem Reporting for Support Documentation

The problem and change reporting for the support documentation will be conducted through the use of Support Documentation Change Reports. Although the Support Documentation Change Report form shown in Figure 6 does not capture as much detailed information as the Problem Report, this form does capture the information necessary to comply with Paragraph 7.2.3 of DO-178B. Once a support document enters the configuration management system, all further changes to that document will be controlled through the Support Documentation Change Reports; that is, all changes to any support documentation must be accompanied by an approved Support Documentation Change Report. Each configuration item that is a part of the support documentation will have its own set of change reports. The SQA representative will keep a log of all change reports for each configuration item.

The following procedure, as shown in the flow chart in Figure 7, should be followed for initiating and completing the Support Documentation Change Report for all support documentation.

1.
The author of the support documentation fills out Sections 1, 2, 4, and 5 of the Support Documentation Change Report form. The Continuation form should be used if additional space is required for further explanation.

2.
The form is given to the SQA representative who determines if the change request is reasonable and assigns a modification number to the report if the request is approved.

3.
The SQA representative logs this as an outstanding change report for the particular configuration item and returns the form to the author to implement the change.

4.
The author requests to reserve the affected configuration item and must refer to the modification number when making the request.

5. The author implements the requested change to the configuration item.

6. When the modification is completed, the author completes Section 6 of the form, places the configuration item in the appropriate place for the configuration manager to retrieve, and returns the form to the SQA representative for review.

Support Documentation Change Report
page 1 of ____

1. Configuration Item:
2. Date:
3. Modification #:

4. Part of Configuration Item Affected:

5. Reason for Modification:

6. Modification

7. SQA Signature & Date:

Figure 6. Support Documentation Change Report Form

7.
The SQA then reviews the change for consistency and compliance with project plans and standards. If the change is not acceptable, the SQA representative can work with the author to implement the necessary modifications. The project leader will arbitrate if the author and SQA representative cannot reach consensus.

8.
When the change has been completed and approved by the SQA representative, the SQA representative should notify the configuration manager that the configuration item that was modified has been approved and should be replaced in the appropriate CMS library.

9.7 Completing the Support Documentation Change Report Form

In this section, instructions for completing the fields of the Support Documentation Change Report form are stated. Specific instructions or further explanation for each section of the Support Documentation Change Report form are given below.

page 1 of __: Fill in the total number of pages on each form to help avoid the loss of any attached pages. As many Continuation forms as necessary may be used.

1.
Configuration Item: the label for the configuration item that needs to be changed.

2.
Date: date that this change report is being initiated.

3.
Modification #: to be provided by the SQA representative. The author should give the form to the SQA representative to get the number and corresponding authorization to implement the change.

4.
Part of the Configuration Item Affected: describe the location of the proposed change. Chapter and section references should be included as appropriate.

5.
Reason for Modification: explanation detailing why the configuration item should be changed.

6.
Modification: description of the change including the following information as appropriate: original text (that is to be changed), action (such as deletion, addition, or modification), and modified text (the correct text to be inserted). If substantial changes are made, the affected pages should be attached to the form.

7.
SQA Signature and Date: After checking that the change is acceptable and has been properly made, the SQA representative should sign and date the form indicating approval of this change.

9.8 Completing the Continuation Form

The Continuation Form provides extra space in addition to the PR, AR, and Support Documentation Change Report forms. Figure 8 shows the Continuation Form. Specific instructions or further explanation for each section of the Continuation form are provided below.

______________ Report Continuation: Fill in the blank with the name of the form that is being continued.

page__ of __: Fill in the page number and total number of pages on each form to help avoid the loss of any attached pages. As many Continuation forms as necessary may be used.

a.
Report #: the number of the report that is being continued

b.
Notes/Explanation: This section is to be used to continue comments or descriptions from any section of a report.

Figure 7. Flow of Change Reporting Process for the Support Documentation

Figure 8. Report Continuation Form

10. Collecting Effort Data

The DO-178B guidelines do not address the collection of effort data for a software development process. However, one of the major objectives of the GCS project is to make observations on the effectiveness of a development process that complies with the DO-178B guidelines. Part of the effectiveness assessment includes a report on the effort hours expended to accomplish various development activities. For the GCS project, effort data will be collected throughout the DO-178B development process for the GCS implementations from all of the major project participants (programmers, verification analysts, SQA representative, configuration manager, and system analyst). There is a unique data collection form specific to each particular role in the development process, and each participant will be required to record effort on a daily basis. The list of activities on each form is not an exhaustive list of activities required by the participants in the project, but instead represents the primary activities where effort data is of interest. Consequently, the effort hours listed on the effort data forms may not reflect the total number of hours a participant has worked on the GCS project during the given time period. Each form will be used to collect information over a period of one week (Sunday through Saturday). These forms are given in the Appendix. The following are the general procedures for recording the effort data.

On the form, the participant will fill in his name, the name of the planet to which he is assigned if applicable, and the dates for the week that the effort is being recorded (for example, 9/20/92-9/26/92 for the week of September 20-26, 1992). Then, for each day of the week, the participant records the number of hours spent in each of the specified activities. Although the activities for which the effort is recorded are largely self-explanatory, additional instructions regarding these activities are given in the Appendix. Time should be recorded to the nearest tenth of the hour (rounding up) for each activity. For example, if a programmer spends 4 hours and 21 minutes making changes to his code due to a code review, he would record 4.4 hours in the appropriate place on the effort data form. There is no need to record a "0" when no effort has been expended in a particular activity. However, if no effort data has been recorded for any of the activities during a given week, the effort data form should still be filled out by placing a "0" in the first entry in the column labeled "Totals" and drawing a straight line through the remainder of the Totals column. The forms should be submitted to the project leader the following week. Any questions regarding the effort data should be directed to the project leader.

11. Communication Protocol

Because the GCS software development process is part of a larger experiment framework for studying the characteristics of the software failure process, maintaining a high degree of independence among the different GCS implementations is important. Hence, the control of communication among the project participants is very important. A software product called VAX Notes will be used as the principal means of formal communication among project participants to help maintain control of the communication among the various project participants and provide an automated system for recording the exchange of certain information. (See the Software Life Cycle Environment Configuration Index or further information on VAX Notes.) The relationships, for communication, among the project participants have been divided into two classes: primary communication and secondary communication. The following diagram shows those participants included in the primary communication class.

Primary Communication Flows

Programmers
<------------>
System Analyst

Programmers
<------------>
Configuration Manager

Verification Analysts
<------------>
Configuration Manager

In the primary communication class, it is important to capture the communication that takes place between each pairing of participants. All questions about the GCS specification should be addressed to the system analyst. It is especially important to capture the questions that the programmers ask the system analyst about the specification and the response from the system analyst. All questions to the system analyst should be specific to the GCS specification as opposed to questions about implementation specific issues. Additionally, the programmers and verification analysts should use VAX Notes when making requests for elements from the configuration manager, and the configuration manager should respond using VAX Notes.

The relationships in the secondary communication class are shown below.

Secondary Communication Flows

Verification Analysts
<------------>
System Analyst

Programmers
<------------>
SQA Representative

Verification Analysts
<------------>
SQA Representative

In this class, the need to capture all communication between each pairing is not critical. Verification analysts may use VAX Notes to ask the system analyst specific questions regarding the GCS specification, but they may not ask implementation specific questions. Questions regarding project policies, procedures and standards should be addressed to the SQA representative. VAX Notes may be used here as a convenient medium for communicating and capturing a record for future reference of that information; but communication using VAX Notes in these cases is not required.

Along with the VAX Notes conferences established for the communication flows in the primary and secondary classes, there will be a general Announcements conference available to all project participants. General information about the project such as schedule changes and meeting announcements or updates to policies and procedures affecting all project participants may be posted to this conference.

11.1 Conventions for Communication between Programmers and System Analyst

All communication between the system analyst and the programmers should be done using VAX Notes so that records can be kept of the questions asked about the GCS specification and the responses made to those questions. This section describes specific conventions that the programmers should follow when using VAX Notes to communicate with the system analyst about the specification.

Special VAX Notes conferences and classes have been established to aid communication. The VAX Notes class which contains the relevant conferences is called GCS. The relevant conferences in the class GCS are as follows:

Announcements: contains announcements from either the Project Leader or the SQA representative to all GCS project participants

SA-All-Programmers: contains announcements from the system analyst to all of the programmers

SA-Mercury-Programmer: contains all communications between the system analyst and the Mercury Programmer

SA-Pluto-Programmer: contains all communications between the system analyst and the Pluto Programmer

Within these conventions regarding communication, the words topic, reply and note will be used in the strict sense of a VAX Notes topic, reply, or note, respectively. The examples given here are not meant to be realistic in terms of any specific version of the GCS specification, but are given merely as examples of notes formatted according to the conventions outlined here.

11.2 General Rules Regarding Topics and Replies

If a programmer has a new question to discuss with the system analyst, then the programmer should send the question to the system analyst by writing a new VAX Notes topic into the relevant conference. When the system analyst responds to the question for the first time, a VAX Notes reply to the VAX Notes topic will be sent If the programmer wishes to respond to either the original topic or the first reply, then that person should send another reply to the same topic, and the system analyst will do the same. In other words, as long as the conversation is related to the original topic or any of the replies to that topic, then all communications will be in the form of sequential replies to that same topic; however once the programmer wishes to ask about or discuss a new issue, then writing a new VAX Notes topic is appropriate.

Normally, each topic should contain only a single question. A topic may contain more than one question only in the case where the questions are very closely related to each other. Each question in a topic should be very specifically stated.

Conventions and Formats for Notes
• Note Title

Each title may contain up to 63 characters (see page 3-5 of Guide to VAX Notes). The title should be as informative as possible about the contents of the note because when one performs a directory of the notes in a conference, the title appears, but the text of the note does not.

Topic Title

The topic title should be written according to a strict format because parts of it will be used by the system analyst to organize the notes. The topic title should have the following format, where the "/" is an actual literal that must appear. The item inside the closed brackets is conditionally required (see below). The format is:

Topic Title = </Topic Source[/Figure-Table]/Topic Description>

- Topic Source (required)

The Topic Source is either the name of the section(s) in the specification or the name of a modification to the specification, to which the question applies. The specification section names are predefined and appear in Table 7 below. The programmer must use at least the first four characters of the section name if the section name has four or more characters, but may use more if so desired. If the actual section name has less than four characters, then the full section name should be used. In those cases where the first four characters are not unique, substitutions are given in the table below, and those substitutions must be used instead of the actual section name. In each case, the required part of the section name is bolded. If the source of the question is a Support Documentation Change Report, then the Topic Source should be "Modx.y-z", where x.y-z is the number of the modification. If, for some reason, none of the predefined section names nor a modification number is appropriate, then one should use the substitute name "other" and describe the source in the text part of the topic. In the case where the question applies to more than one source, list all the applicable sources separated by commas.

Examples of valid Sources are:

aecl

AECLP

cp

dad1,dad2,dad3

intr

INTRODUCTION

Terminal Desc

vehd

MOD2.2-1

other

Table 7. Specification Section Names

Section Name as it Appears in Table of Contents
Required Substitutions

arsp

asp

appendix a
appa

appendix b
appb

appendix c
abbc

bibliography

cp

crcp

contents

conventions

data dictionary 1
dad1

data dictionary 2
dad2

data dictionary 3
dad3

definitions

engines

exception handling

foreword

general

gp

gsp

introduction

level 0 spec
lev0

level 1 spec
lev1

level 2 spec
lev2

level 3 spec
lev3

list of figures
lisf

list of tables
list

notation

preface

purpose

reclp

requirements

rotation

tdlrsp

tdsp

terminal descent

title page

tsp

use of tables
tabl

vehicle configuration
vehc

vehicle dynamics
vehd

vehicle guidance
vehg

(none)
other

- Figure-Table (required only if question involves a numbered Figure or Table)

If the question or issue involves a Figure or Table in the specification, then the abbreviation "Fig" or "Tab" should appear followed by the actual figure or table number with no intervening spaces.

Examples of valid Figure-Table are:

Fig3.1

figB.1

Tab5.11

TABC.1

- Topic Description (required)

Topic Description is a description of the question or issue in the topic text. This description may contain any characters acceptable to VAX Notes. It is suggested that the description begin with "Q:" for a question, "A:" for an answer or "S:" for a statement.

Example of a valid topic description:

Q: Why is THETA initialized to zero?

Examples of valid Topic titles:

/RECLP/ Q: Why is THETA initialized to zero?

/Aecl/ Q: What does "to the nearest integer" mean?

/TDLRSP/Tab5.11/ Q: What is the meaning of ""?

Reply Title

The format of the reply title is as follows:

Reply Title = <Reply Description>

The Reply Description is any text which concisely describes the contents of the text of the note. It does not have to subscribe to any particular format. It may contain any characters acceptable to VAX Notes.

Example of valid Reply Title:

A: Text in spec is incorrect. SA will Issue Formal Mod.

• Note Text

Each programmer should read Section 3.1.1 of Guide to VAX Notes, "Making Your Notes More Readable" and should exercise personal judgment in using these suggestions as guidelines in writing the text part of the note.

Topic Text

The following items may be included in the topic. The bolded items are literals that should appear in the text. The "Page:" and "Location:" items should appear first and second, respectively. If the page has a modification, one should include that information in the page number. The statements and questions may appear in any order, but each should start on a new line.

PAGE: <the starting page number of the problem or issue> (required)

LOCATION: <description of the starting location> (required)

Q: <the question or problem> (optional)

S: <a statement or comment> (optional)

Example of Topic Text:

Page: 65

Location: Section labeled "DETERMINE PULSE INTENSITY AND DIRECTION", third sentence from the end of the paragraph.

S: The text states: "The variable THETA will be initialized to the value zero by INIT_GCS."

Q: Since THETA is the roll angle, it does not seem logical that it would always be initialized to zero. Is this sentence correct, and if so, why?

Example of Topic Text:

Page: 38 (with Mod 2.2-1)

Location:"DETERMINE ENGINE TEMPERATURE"

Q: Why should the engine temperature be set in AECLP?

Reply Text

The following items may be included in the reply text. The bolded items are literals that should appear in the text. The "RE:" entry should appear first. The statements, questions, and answers may appear in any order, but each should start a new line.

RE:<Note-range>
(required) (Note-range is the range of note(s) to which this reply is a response. If the note numbers are not contiguous, then list several ranges separated by commas.)

S: <statement>
(optional) (to be used if this part of the text is merely a comment or statement)

Q: <question>
(optional) (to be used if this part of the text is a question)

A: <answer>
(optional) (to be used if this part of the text is an answer to a previous question)

Example of Reply Text:

RE: 12.1

S: The answer in note 12.1 is logical as far as it goes.

Q: It leaves unanswered the following question: Why is temperature calculated before calculating limiting errors?

• Keywords

Topic Keywords

The keyword will be the literal "v" followed immediately by the specification version number, which is the actual version number appearing on the title page of the specification to which this question (or modification) applies.

Examples of valid topic keywords:

v2.2

V2.2

At the present time, keywords will not be needed on replies.

11.3 Optional Notification From Within VAX Notes Using MAIL Utility

It should be noted that VAX Notes does not immediately notify a member of a conference when a note has been written into the conference. If the programmer wishes the system analyst to be notified immediately, the "FORWARD" command from within VAX Notes can be used to send a copy of the new note, with an optional preface, to the system analyst, or alternatively the "SEND" command from within VAX Notes can be used to send a notification to the system analyst that a new note has been written to the conference (See Guide to VAX Notes, Sections 3.5 and 3.6)

11.4 Using Text Files for Note Creation

There does not appear to be a way to change the text of a note once the note has been entered into the conference. For that reason, it may be helpful when writing notes to first write the text of the note into a text file using an editor in order to verify that it is correct. Then from within VAX Notes, the note can be written into the conference from the text file. For example:

From VMS:

$edit note.txt (create the text for the note)

Then, from VAX Notes:

Notes>write note.txt ,or

Notes>reply note.txt

Figure 9 shows an example conversation that might take place between a programmer and the system analyst using VAX Notes. Then, Figure 10 shows the directory that would result from the conversation shown in Figure 9.

==

Note 1.0 /AECLP/Q: What does "to the nearest integer" mean? 4 replies

AIR19::PG "Programmer" 5 lines 31-DEC-1992 13:02

--

Page: 41

Location: "COMPUTE AXIAL ENGINE VALVE SETTINGS", last sentence.

S: The specification uses the phrase "to the nearest integer".

Q: What exactly is meant by the phrase "to the nearest integer" ?

==

Note 1.1 /AECLP/Q: What does "to the nearest integer" mean? 1 of 4

AIR19::SA "system analyst" 7 lines 31-DEC-1992 15:43

 -< A: Definition of "to the nearest integer" >-

--

RE: 1.0

A: The phrase "to the nearest integer" means the following:

If the fractional part of the real number is less than .5, then

set AE_CMD to the closest integer which is less than the real number;

if the fractional part of the real number is greater than .5, then

set AE_CMD to the closest integer which is greater than the real number.

==

Note 1.2 /AECLP/Q: What does "to the nearest integer" mean? 2 of 4

AIR19::"PG "Programmer" 4 lines 31-DEC-1992 16:24

 -< Q: What if real number = .5? >-

--

RE: 1.1

Q: What should be done in the case where the fractional part of the real number is exactly equal to .5?

==

Note 1.3 /AECLP/Q: What does "to the nearest integer" mean? 3 of 4

AIR19::SA "system analyst" 6 lines 31-DEC-1992 16:27

 -< A:Method for treating case where real number = .5 >-

--

RE: 1.2

A: If the fractional part of the real number is exactly equal to .5,

then treat it as equivalent to the case where the fractional part

of the real number is greater than .5.

==

Note 1.4 /AECLP/Q: What does "to the nearest integer" mean? 4 of 4

AIR19::SA "system analyst" 4 lines 31-DEC-1992 16:30

 -< S: Support Documentation Change Report will be issued >-

--

RE: 1.0 - 1.3

S: A Support Documentation Change Report for the Specification will be issued to fully resolve this issue.

Figure 9. Example of a Conversation Between the Programmer (PG) and System Analyst(SA)

 conversation-examples

Created: 31-DEC-1992 12:58 1 topic Updated: 31-DEC-1992 16:30

Topic
Author
Date
Reply Title

AIR19::PG
31-DEC-1992
4 /AECLP/Q: What does "to the nearest integer" mean?

AIR19::SA
31-DEC-1992
1.1 A: Definition of "to the nearest integer"

AIR19::PG
31-DEC-1992
1.2 Q: What if real number = .5?

AIR19::SA
31-DEC-1992
1.3 A: Method for treating case where real number = .5

AIR19::SA
31-DEC-1992
1.4 S: Support Documentation Change Report will be issued

Figure 10. Directory of All Notes in the Conversation Example

12. Documentation Guidelines

As shown in the list, found in Table 1, of DO-178B life cycle data that will be produced as part of this project, each participant in the project is responsible for some portion of the data. This chapter gives some minimal guidance in the preparation of documentation associated with the GCS project. Since many of the configuration items that make up the support documentation will refer to each other and will be in an evolutionary process at the beginning of the project, it is important to use a common set of labels for all of the configuration items. The appropriate labels for the configuration items are given in Table 2. For those items that are implementation specific, the labels should refer to the appropriate implementation when appropriate. The configuration item labels given in Table 2 will serve as the titles for the project documentation.

In general, the contents of all support documentation must follow the descriptions given in Section 11 of the DO-178B guidelines, where applicable to the GCS project. The support documents should be formatted in accordance with the standards for NASA technical publications (ref. 15). All of the support documentation for this project should also contain the same preface, as given in the beginning of this document, to provide a common background statement for the documents. Furthermore, the electronic versions of the project's support documentation that are stored in the CMS libraries will be produced using Microsoft Word (ref. 16). See the Software Life Cycle Environment Configuration Index for more information on the word processing tools used on the GCS project.
The support documentation and development products will evolve as the project progresses. As discussed in Subsection 4.2 of DO-178B, all support documentation will be completed prior to that point in time in the software life cycle necessary to provide timely direction to the personnel performing the software development and integral processes; e.g. all support materials for conducting a design review (including the design standards, description of the design review, review procedures, checklists, traceability matrix, problem and action reporting procedures and forms, and the configuration management and SQA guidelines) must be in place prior to conducting a design review. The SQA representative is responsible for assuring that all plans and necessary materials are developed and reviewed for consistency at the appropriate phases of the development process, as per Subsection 8.2 of DO-178B. The project leader must also review and approve all support documentation.

Appendix

The following are the effort data forms and the specific instructions for completing the forms for each of the significant participation roles in the GCS project. The programmers, verification analysts, SQA representative, configuration manager, and system analyst are required to record their effort. The general project policy for collecting effort data is given in the chapter titled "Collecting Effort Data". Copies of the effort data forms will be given to the project participants at the start of the project.

Instructions to the Programmers for Recording Effort

This section provides specific instructions to the programmers for recording the amount of effort exerted for each of the activities listed on the effort data form for the programmers. The effort data form for the programmers is shown in Figure 11. The general programmer activities as listed on the form are given below, followed by a statement that details the specific activities for which effort should be accounted.

1. Changing Design during Transitional Design Phase: record time spent reading and understanding version 2.2 of the GCS specification, learning about teamwork, making modifications to the teamwork design (generated at RTI) to bring it up to version 2.2, and preparing the design description. This will include most of the time spent on the GCS project prior to the first Design Review.

2. Developing Source Code: record time spent developing source code to meet the detailed design description. This will include all time spent generating the source code until the time of the first Code Review.

3. Participating in Design Reviews and Code Reviews: record all time spent preparing for the reviews and attending the reviews. Preparation time includes time spent at the Overview meeting for the Design Review and any time spent inspecting the design or code in anticipation of a review. If a Design or Code Review is conducted in response to a modification to the specification, place an * by the hours indicated.

4. Changing Design due to: record time spent making modifications to the detailed design description in response to a Problem Report issued during one of the particular development phases listed. Problem Reports for the design will not be issued until the first Design Review.

5. Changing Code due to: record time spent for making modifications to the software code in response to a Problem Report issued during one of the particular development phases listed. Problem Reports for the code will not be issued until the first Code Review.

6. Responding to Modifications to the Requirements: record time spent reading and understanding the Support Documentation Change Reports for the GCS specification and making changes to the design or code due to modifications to the GCS specification. Effort should be recorded in this category only after the first Design Review.

NAME:____________________
WEEK:______________________

Effort Hours for Programmer Activities

WEEKDAY

Programmer Activities
Su
M
T
W
H
F
Total

1. Changing Design during Transitional Design Phase

2. Developing Source Code

3. Participating in Design Reviews

 Code Reviews

4. Changing Design due to:

Design Review

Code Review

Unit Test (functional)

Unit Test (structural)

Subframe Test

Frame Test

Top-Level Simulator Integration Test

5. Changing Code due to:

Code Review

Unit Test (functional)

Unit Test (structural)

Subframe Test

Frame Test

Top-Level Simulator Integration Test

6. Responding to Modifications to the Requirements

Change to Design

Change to Code

Figure 11. Form for Recording Effort Data from Programmers

Instructions to the Verification Analysts for Recording Effort

This section provides specific instructions to the verification analysts for recording the amount of effort exerted for each of the verification activities listed on the effort data form. Figure 12 shows the form that the verification analysts will use to record their effort data. The general verification activities as listed on the form are given below, followed by a statement that details the specific activities for which effort should be accounted.

1. Developing Verification Plans, Procedures, and Tools: record time spent developing and documenting the verification plans and procedures and tools (such as checklists, traceability data, test cases, test drivers, etc.) during each of the development phases. Note that effort recorded under the category Transitional Design Phase should include time spent understanding version 2.2 of the GCS specification, learning about aspects of software verification, and establishing procedures and tools for the initial verification activities. In addition, effort in the Transitional Design Phase category will include time spent establishing and documenting the traceability data and matrix, and the Design Review procedures and checklists.

2. Participating in Verification Activities: record all time spent doing the verification activities defined for each of the development phases. This time should include time spent preparing for the reviews (including attendance to the Overview meeting for the Design Review and inspecting a design or code in anticipation of a review), attending the reviews, running test cases, writing Problem Reports when necessary, and re-executing test cases to determine if a problem is resolved during each of the development phases.

3. Responding to Modifications to the Requirements: record time spent making changes to any verification plans, procedures or tools, or conducting a verification activity (such as re-executing test cases or attending a new Design Review) due to Support Documentation Change Reports for the GCS specification. Effort should be recorded for this activity only after the first Design Review. Effort should be recorded in the development phase where the changes are made. For example, if a test case used in the functional part of the unit testing needs to be changed in response to a modification, the effort hours should be recorded in the category "Unit Test Phase Functional." If the change relates more to a general verification procedure or tool (such as the traceability matrix), record the effort hours in the current development phase.

NAME:____________________
WEEK:______________________

Effort Hours for Verification Analyst Activities

WEEKDAY

Verification Analyst Activities
Su
M
T
W
H
F
Total

1. Developing Plans, Procedures, and Tools

Transitional Design Phase

Coding Phase

Unit Test Phase: Functional

 Structural

Subframe Test Phase

Frame Test Phase

Top-Level Simulator

Integration Test Phase

2. Configuring Life Cycle Data for:

Transitional Design Phase

Coding Phase

Unit Test Phase: Functional

 Structural

Subframe Test Phase

Frame Test Phase

Top-Level Simulator

Integration Test Phase

3. Responding to Modifications to the Requirements

Transitional Design Phase

Coding Phase

Unit Test Phase: Functional

 Structural

Subframe Test Phase

Frame Test Phase

Top-Level Simulator

Integration Test Phase

Figure 12. Form for Recording Effort Data from Verification Analysts

Instructions to the SQA Representative for Recording Effort

This section provides specific instructions to the SQA representative for recording the amount of effort exerted for each of the SQA activities listed on the effort data form. The effort form is shown in Figure 13. Since there is only one person assigned to provide the SQA services for the GCS project, the primary SQA activities (conducting reviews and tracking Problem Reports) are separated on the form for each of the GCS implementations, Mercury and Pluto. Since the SQA procedures and Support Documentation Change Reports for the GCS specification are common among the implementations, those categories for recording that effort are not separated according to implementation. The general SQA activities as listed on the form are given below, followed by a statement that details the specific activities for which effort should be accounted.

1. Developing Plans, Procedures, and Tools: record time spent developing and documenting the SQA plans and procedures and tools (such as the master logs for tracking the Problem Reports) in accordance with the DO-178B guidelines for the GCS project.

2. Participating in Reviews: record time spent preparing for, attending, and generating the SQA report for reviews conducted in each of the development phases for each of the GCS implementations. Preparation time includes time spent preparing for and conducting the Overview meeting for the Design Reviews. If a review is conducted in response to a Support Documentation Change Reports for the GCS specification, place an * by the hours indicated.

3. Reviewing Problem Reports: record time spent reviewing, assigning identification numbers to, distributing and tracking, and logging the Problem Reports during each of the development phases for each of the GCS implementations. For time spent reviewing Problem Reports that resulted from Support Documentation Change Reports for the GCS specification, place an * by the hours.

4. Conducting Audits: record time spent preparing for, conducting, and recording the results of audits for each of the GCS implementations.

5. Reviewing Modifications to the Requirements: record time spent reviewing Support Documentation Change Reports for the GCS specification. Effort should be recorded in this category only after the first Design Review.

NAME:____________________
WEEK:______________________

Effort Hours for Software Quality Assurance Activities

WEEKDAY

Software Quality Assurance Activities
Su
M
T
W
H
F
Total

1. Developing Plans, Procedures, and Tools

Mercury

 Design:
2. Review

3. Problem Reports

 Code:
2. Review

3. Problem Reports

 Unit:
2. Review

3. Problem Reports

 Subframe:
2. Review

3. Problem Reports

 Frame:
2. Review

3. Problem Reports

 Top-Level
2. Review

 Simulator Integration
3. Problem Reports

 4. Audits

Pluto

 Design:
2. Review

3. Problem Reports

 Code:
2. Review

3. Problem Reports

 Unit:
2. Review

3. Problem Reports

 Subframe:
2. Review

3. Problem Reports

 Frame:
2. Review

3. Problem Reports

 Top-Level
2. Review

 Simulator Integration
3. Problem Reports

 4. Audits

5. Reviewing Modifications to the Requirements

Figure 13. Form for Recording Effort Data from the SQA Representative

Instructions to the Configuration Manager for Recording Effort

This section provides specific instructions to the configuration manager for recording the amount of effort exerted for each of the configuration management activities listed on the effort data form. Figure 14 shows the effort form for the configuration manager. Since there is only one person assigned to provide the configuration management services for the GCS project, some of the configuration management activities have been separated on the form for each of the GCS implementations, Mercury and Pluto. The general configuration management activities as listed on the form are given below, followed by a statement that details the specific activities for which effort should be accounted.

1. Developing Plans, Procedures, and Tools: record time spent developing and documenting the configuration management plans and procedures and tools (such as creating the CMS libraries for the project's life cycle data) in accordance with the DO-178B guidelines for the GCS project. Effort involved in learning about configuration management practices and CMS should also be included here.

2. Configuring life cycle data for: record time spent performing the configuration management activities, such as reserving, replacing, and fetching GCS elements or baselining, for each of the GCS implementations, differentiating between the programmer and verification analyst for each implementation. Also record time, in the category "General Project", for time spent providing configuration management for those aspects of the project that are common to all implementations, including the primary planning documents (Plan for Software Aspects of Certification, Software Verification Plan, Software Configuration Management Plan, and Software Quality Assurance Plan).

NAME:____________________
WEEK:______________________

Effort Hours for Configuration Management Activities

WEEKDAY

Configuration Management Activities
Su
M
T
W
H
F
Total

1. Developing Plans, Procedures, and Tools

2. Configuring Life Cycle Data for:

Mercury Programmer

Mercury Verification Analyst

Pluto Programmer

Pluto Verification Analyst

General Project

Figure 14. Form for Recording Effort Data from the Configuration Manager

Instructions to the System Analyst for Recording Effort

This section provides specific instructions to the system analyst for recording the amount of effort exerted for each of the system analyst activities listed on the effort data form. Figure 15 shows the effort form for the system analyst. In general, the system analyst is responsible for the definition and maintenance of the software requirements for the project. The activities for the system analyst as listed on the form are given below, followed by a statement that details the specific activities for which effort should be accounted.

1. Maintaining the GCS Specification: record time spent reviewing the GCS specification for correctness and completeness and issuing any Support Documentation Change Reports that are deemed necessary.

2. Consulting for: record time spent responding to questions about the GCS specification from the programmers and verification analysts for each of the GCS implementations.

3. Participating in Reviews for: record time spent preparing for and attending the Design and Code reviews for each of the GCS implementations. Preparation time includes time spent at the Overview meeting for the Design Review and any time spent inspecting the design or code in anticipation of a review. If the Design or Code Reviews are held in response to a Support Documentation Change Report, place an * by the hours indicated.

NAME:____________________
WEEK:______________________

Effort Hours for System Analyst Activities

WEEKDAY

System Analyst Activities
Su
M
T
W
H
F
Total

1. Maintaining the GCS Specification

2. Consulting for:

Mercury

Pluto

3. Participating in Reviews for:

Mercury

Pluto

Figure 15. Form for Recording Effort from the System Analyst

References

1.
Finelli, George B.: Results of Software Error-Data Experiments. In AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

2.
RTCA Special Committee 167. Software Considerations in Airborne Systems and Equipment Certification. Technical Report RTCA/DO-178B, Requirements and Technical Concepts for Aviation, Dec. 1992.

3.
RTCA Special Committee 152. Software Considerations in Airborne Systems and Equipment Certification. Technical Report RTCA/DO-178A, Radio Technical Commission for Aeronautics, March 1985.

4.
Hatley, Derek J.; and Pirbhai, Imtiaz A.: Strategies for Real-Time System Specification. Dorset House Publishing Company, New York, New York, 1987.

5.
Shagnea, Anita M.; and Dunham, Janet R.: GCS Development Specification Review Description. Technical Report, Research Triangle Institute, Research Triangle Park, NC 27709, 1989. Prepared under NASA Contract NAS1-17964; Task Assignment No. 8.

6.
Teamwork/SA Teamwork/RT User's Guide. Cadre Technologies, Inc., Providence, Rhode Island, Release 4.0, 1991.

7.
DeMarco, Tom: Structured Analysis and System Specification. YOURDON Inc., 1133 Avenue of the Americas, New York, NY 10036, 1978.

8.
Ward, Paul; and Mellor, Steven: Structured Development for Real-Time Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1985.

9.
Teamwork/SD User's Guide. Cadre Technologies, Inc., Providence, Rhode Island, Release 4.0, 1991.

10.
Guide to VAX Notes. Digital Equipment Corporation, Maynard, Massachusetts, March 1986.

11.
Guide to VAX DEC/Code Management System. Digital Equipment Corporation, Maynard, Massachusetts, April 1987.

12.
Programming in VAX FORTRAN. Digital Equipment Corporation, Maynard, Massachusetts, September 1984.

13.
Roberts, Alan; Rich, Don; and Pierce, John: Internal Document : VMS FORTRAN Code Generation Guidelines. Software R & D Department, Center for Digital Systems Research, Research Triangle Institute, Research Triangle Park, NC, June 1986.

14.
Guide to VAX DEC/Module Management System. Digital Equipment Corporation, Maynard, Massachusetts, April 1987.

15.
NASA Publications Manual. NASA SP-7013, 1974.

16.
Microsoft Word User's Guide. Microsoft Corporation. 1991.

