Appendix A - IEEE 12207.1/NPR 7150.2 Tailoring Matrix

Appendices for LMS-CP-7150.3 Class A, B and All Safety-critical Software
Revision A: OD
Expires: 3/31/2018

	Table of Contents
	2Appendix A: Software Documentation Requirements

3Appendix A1: Software Management Plan (SMP)

12Appendix A2: Software Configuration Management Plan

13Appendix A3: Software Test Plan

16Appendix A4: Software Maintenance Plan

18Appendix A5: Software Requirements Specification

22Appendix A6: Software Data Dictionary

23Appendix A7: Software Design Description

26Appendix A8: Interface Design Description

28Appendix A9: Software Change Request

29Appendix A10: Software Problem Report

30Appendix A11: Software Test Procedures

32Appendix A12: Software Version Description

33Appendix A13: Software Test Report

34Appendix A14: Software Inspection Summary Report

35Appendix A15: LaRC Software Metrics Collection Data

37Appendix A16: Software User Manual

39Appendix A17: Safety-Critical Software Checklist

40Appendix B: Plan Exemptions

41Appendix C: LaRC Compliance Matrix for Class A, B, and All Safety-Critical Software

Appendices for LMS-CP-7150.3 Class A, B and All Safety-critical Software CP_7150-3_130514_A.doc

 Appendix A: Software Documentation Requirements
a. The project completes the subappendices (Appendix A1 through A17) of this Appendix.

a. The subappendices specify the required content of software documents, but the format and style of the documents are left up to the project.

a. As long as the required content is addressed, subappendices can be combined or requirements within a subappendix can be rolled out as a separate document.

a. If the software activities are part of a larger/parent project, content requirements in A1 through A14, A16 and A17 can be fulfilled by the parent project documentation if the required content is fully addressed.

b. In Appendix A1 through A17, text in black is required; software activities shall fully comply with statements in black text unless a request for tailoring is documented in the Compliance Matrix (specified in Appendix C) and approved following LPR 7150.2, Section 2. [SWE-139] Text in gray is contextual information that provides further description or examples to help clarify the requirement or additional items to be included in the document that are recommended by industry standards or NASA NPR.
c. For the reader’s convenience in completing the following subappendices, an electronic Microsoft Word version of Appendix A1 through A17 and Appendix C is provided in the “Appendices for LMS-CP-7150.3: Class A, B and All Safety-critical Software ” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ .

d. The project shall clearly note “Not Applicable” document content requirements as “NA” in both the document and the project’s Compliance Matrix (specified in Appendix C); only those requirements marked with an asterisk “*” in Appendix A1 through A14 may be denoted as “NA” without required approval via LPR 7150.2. The omission or modification of document content requirements without an asterisk does require approval following LPR 7150.2, Section 2, Tailoring and Waivers.
d. Specific content within the subappendices (Appendix A1 through A14) may not be applicable for every project.

d. The decision(s) to make document content requirement items not applicable (NA) may be reviewed by external organizations (e.g., Mission Assurance Branch, Headquarters Office of Safety and Mission Assurance auditors, and Headquarters Office of Chief Engineer auditors). [NPR 7150.2A:Chapter 5 modified] For the benefit of reviewers, the project should document a short justification for each NA. [HQ OCE]

Appendix A1: Software Management Plan (SMP)
Instructions: The Software Management Plan is a living document. Therefore some of the plan’s required content may not be known at the time of its initial release and approval (e.g., which design items and software code will undergo Software Inspection). However, for unknown items, expected closure dates should be assigned and tracked.

The Software Management Plan shall include: [SWE-102] [SWE-032.e] [SWE-013]
e. Project organization. Project organizational structure showing authority and responsibility of each organizational unit, including contractual suppliers and external organizations (e.g., universities, other government organizations, and industry partners). [SWE-102.a]
e. Include the Mission Assurance Branch in the organizational structure because it performs, at a minimum, the Software Assurance Classification Assessment and safety-criticality determination as defined in LMS-CP-4754, Software Assurance (SA) for Development and Acquisition. [SWE-102.a] [LMS]
e. Include as an external interface to the organizational structure the Technical Authority for approving any project requested tailoring or waivers. [SWE-102.a] [SWE-122]
f. Software classification and safety criticality. The software classification of each of the systems and subsystems containing software and the safety criticality determination (e.g., The project is safety-critical and Class C).
[SWE-102.b] [SWE-020] [SWE-133]
g. Compliance Matrix. The completed Compliance Matrix is included as an appendix to the SMP. [SWE-102.c] [SWE-125] A Microsoft Word version of the Compliance Matrix (as specified in Appendix C) is provided in the “Appendices for LMS-CP-7150.3: Class A, B and All Safety-critical Software” at:
https://sites-e.larc.nasa.gov/sweng/supporting-products/ .
g. For those requirements delegated to other parties (e.g., other Centers, agencies, grantees, or partners) or accomplished by contract vehicles, identify the responsible party that the requirement is delegated to in the Compliance Matrix. [SWE-125] [NPR 7150.2A:P.2.2]
g. For requirements delegated to other parties, see further instruction in LPR 7150.2 Section 1.4. [SWE-125]
g. Document the tailoring requests against requirements in this procedure in the Compliance Matrix; tailoring is defined in LPR 7150.2, Section 2.3.2. [SWE-102.c] [SWE-125 Note] [SWE-128]
g. Only requirements from Appendix A1 through A14 marked with an asterisk “*” may be denoted as “NA” in the Compliance Matrix. See Appendix A for the restrictions on the use of NA.

h. Engineering environment. [SWE-102.d] Describe software, hardware, and facilities necessary to develop the software products and, as applicable, those items necessary to operate and maintain the software products. Include test environment, equipment, libraries and tools, facilities, standards (e.g., coding or software engineering standards) and procedures. [SWE-102.d] For example, include computing platform, operating system, libraries (Linear Algebra Package (LAPACK)), equipment (logic analyzer, emulator), standards (Unified Modeling Language Version 2.3, ISO/IEC 14882: Programming Language-C++), procedures (use of software development folders to maintain current development progress), and tools (complier, debuggers, static analyzers).

i. WBS, schedule, and cost. [SWE-102.e] [SWE-016] [SWE-015]
The “Wide-Ban Delphi Estimation Process” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ provides an example process for estimating size, cost, or other types of estimates.
i. Work breakdown structure (WBS) of the life-cycle processes, activities, and tasks including: [SWE-036] [SWE-102.e]
i. Software life-cycle products that will be produced (e.g., Software Management Plan, Software Configuration Management Plan, Software Assurance Plan, Software Maintenance Plan, Software Safety Plan, Software Requirements Specification, Software Design Description, Interface Description, Software Data Dictionary, Software Test Plan, Software Test Procedure, Software Test Report, Software Version Description, code, Software User Manuals, LaRC Software Metrics Collection Data, and measurement analysis results). [SWE-102.e] [SWE-077]
i. Appropriate software documentation, including the as-built documentation, to be produced to support the operations and maintenance phases of the life cycle (e.g., Software Version Description that includes the software build and execute instructions, and the up-to-date versions of the appropriate software life-cycle products listed in Appendix A1.e.1.a, including the Software User Manual). [SWE-077] [SWE-078] [SWE-102.e] Other documentation to consider for delivery includes the summary and status of: waivers, quality measures, and open risks. [SWE-077] [SWE-078] [NPR 7150.2A:3.5.4 modified]
i. *Software services and nondeliverable items to be performed. [SWE-102.e]
i. Development, implementation, and tracking of required upgrade intervals (e.g., multiple planned builds or releases, planned block upgrades). [SWE-105.b.1]
i. Software schedule associated with the WBS that satisfies the following conditions: [SWE-102.e] [SWE-016] The “Wide-Ban Delphi Estimation Process” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ provides an example process for estimating size, cost, or other types of estimates.
i. Coordinates with the overall project schedule. [SWE-016.a]
i. Documents: [SWE-016.b]
i. Milestones; [SWE-016.b]
i. Deliverables; and [SWE-016.b]
i. {Class A, B, and C} Interactions of milestones and deliverables between software, hardware, operations, and the rest of the system; [SWE-016.b]
i. {Class D and E} Interactions between software, hardware, operations, and the rest of the system. [SWE-016.b] [LaRC-2012-001 Waiver]
i. *Documents physical resources that the project must track in the schedule (e.g., access to facilities; clean room access; computers, OTS, and ground support/test equipment to be purchased by specific dates). [SWE-102.e]

i. {Class A, B, and C} Reflects the critical path for the software development activities.[SWE-016.c] [LaRC-2012-001 Waiver]
i. * As a part of the acquisition activities, documents the milestones at which the software supplier(s) progress will be reviewed as part of the acquisition activities, or references in the SMP the contractual agreement where this is defined. [SWE-037] [SWE-102.h] [LaRC-2012-001 Waiver]
i. * As a part of the acquisition activities, documents the milestones at which the software supplier(s) will be audited as defined in NASA-STD-8739.8, Software Assurance Standard (and if applicable the NASA-STD-8719.13, Software Safety Standard), or references in the SMP the contractual agreement where this is defined. [SWE-037] [SWE-102.h] [LaRC-2012-001 Waiver]
i. {Class B} If the organization forgoes a CMMI-DEV rating, documents the evaluation of the project against the Maturity Level 2 process areas. The evaluation should occur within 60 days of the approval of the Software Management Plan. (See Section 1, Step 1.b and Step 5.e) [SWE-032]
i. {Class C} If the project forgoes a CMMI-DEV rating, documents an audit (as defined in Step 5.e, in Section 1 of this procedure) against the project’s Compliance Matrix at the midpoint in the project schedule. [SWE-032]
i. Documents the schedule for the activities defined in Section 1 of this procedure. [SWE-102.e]
i. Documents the schedule for the activities in item Appendix A1.h. Verification and validation plan, of this SMP. [SWE-028] [SWE-029] [SWE-102.i] [SWE-102.e]
i. Takes into account the software size. [SWE-102.e]
i. Staffing (e.g., this could be the staffing level for each WBS item, the staffing profile over time, the percentage of each person’s time assigned to the project, or the count of person years per skill needed). [SWE-102.e]
i. {Class A, B, and C} At least one software cost estimate and associated cost parameter(s) that satisfies the following conditions: [SWE-015] [SWE102.e]
i. Covers the entire software life cycle. [SWE-015.a]
i. Is based on selected project parameters (e.g., assessment of the software size, functionality, complexity, criticality, and software process and product risks). [SWE-015.b]
i. Is based on the cost implications of the technology to be used and the required maturation of that technology (e.g., the costs to raise the technology to the needed technology readiness level). [SWE-015.c]
Labor hours can be used as a substitute for the cost of the labor in the above cost estimate. The cost estimate should cover not only labor but also other direct costs and physical resources such as travel, training, and off-the-shelf software or hardware purchases and installation fees. The cost estimate does not include items provided to but not purchased by the project, which may include developer workstations and software development tools. The “Wide-Ban Delphi Estimation Process” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ provides an example process for estimating cost, size, or other types of estimates.

i. {Class D and E} Effort/cost estimate. [SWE-015] [SWE102.e] [LaRC-2012-001 Waiver]
i. Document at least one estimate of effort or cost (include both civil servant and contractor effort) that covers either: [SWE-015] [LaRC-2012-001 Waiver]
i. The entire software life cycle, or [SWE-015.a] [LaRC-2012-001 Waiver]
i. If the software activities are ongoing, then the effort estimate may be for a period of performance (e.g., one year) rather than the whole life cycle. [SWE-015.a] [LaRC-2012-001 Waiver]
i. Document an estimate of special costs that covers the entire software life cycle or period of performance. [SWE-015] [SWE-015.a] [LaRC-2012-001 Waiver] The special costs should include other direct costs and physical resources such as travel, training, and OTS software or hardware purchases and installation fees. Special costs do not include labor. Special costs do not include items provided to but not purchased by the project, which may include developer workstations and software development tools.
i. The estimate also takes into account the cost implications of the technology to be used (e.g., use of a new language, computer added software engineering tools, COTS or open source (and gaining experience to use them correctly), expert consultants for assistance in use or review of resulting products; glueware; or reduced cost due to reuse), [SWE-015.c] and
i. The required maturation of that technology (e.g., raising the technology readiness level). [SWE-015.c]
j. Requirements management. [SWE-102.g] [SWE-053] [SWE-032.a]

j. Describe how the project will manage software requirements and quality characteristics of the software products or services (including collecting and managing changes to them). [SWE-053] [SWE-102.f] [SWE-102.g] Managing changes to requirements includes determining which changes are feasible, if the changes can be implemented within the approved resources, making all stakeholders aware of the changes, etc. Quality characteristics are described in Appendix A5: Software Requirements Specification, item b.12. Document and manage quality characteristics as requirements when possible. Otherwise, document how the project will assess software change requests against the quality characteristics.
j. Describe how the project will maintain consistency among requirements, project plans, and software work products including the Software Test Plan and Software Test Procedures. [SWE-054] [SWE-071]
For example, the inconsistency among these products can be identified through checks during software inspections or reviews (such as phase transition review criteria discussed in item o.2 of this SMP). Inconsistencies may require Software Change Requests. Additionally, consider that change requests may require the project to evaluate the change against requirements, evaluate the change against elements of the plan (e.g., WBS, schedule, budget), and identify the software products that require modification.
j. Describe how the project will initiate and track to closure corrective actions to resolve identified inconsistencies between requirements, plans, and software work products. [SWE-054]
Closure of corrective actions may be part of the phase transition criteria discussed in item o.2 of this SMP, inspections, or reviews.
k. Contractor management. Include the following: [SWE-102.h] [NPR 7150.2A:2.6] [SWE-032.g]
k. The make verses buy decision (i.e., document the results of Step 1.c). [SWE-033] [SWE-102.e] [SWE-102.h]

k. *The acquisition planning decisions and the activities to be performed to gain insight on the supplier (e.g., monthly review of schedules, metrics, financial and progress reports, etc.). [SWE-038] [SWE-039] [SWE-102.e] [SWE-102.h]
This information may be included in this plan, or reference an acquisition plan or contractual agreement where it is documented.
l. Verification and validation plan. [SWE-102.i] [SWE-028] [SWE-029] An example of the “Table of V&V Output Products by Phase ” is at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ .
l. Document a verification and validation plan for the following: [SWE-028] [SWE-029]
l. Activities, methods (test plans and procedures, Software Inspections, analysis, demonstrations). [SWE-028] [SWE-029]
· Examples of verification methods include, but are not limited to, Software Inspections, use of simulations, black box and white box testing techniques, software load testing, software stress testing, software performance testing, decision table-based testing, functional decomposition-based testing, acceptance testing, path coverage testing, analyses of requirement implementation, and software product demonstrations. [NPR 7150.2A:2.4.1 modified] Note that the project specifies the “verification methods” for each requirement in the Software Requirements Specification in Appendix A5, item c.
· Examples of validation methods include, but are not limited to, prototype demonstrations, functional demonstrations, software testing, Software Inspections, behavior in a simulated environment, acceptance testing against mathematical models, analyses, and operational environment demonstrations. [NPR 7150.2A:2.4.2 modified]
l. Include plans for generating the Software Test Plan as defined in Appendix A3 and the Software Test procedures as defined in Appendix A11. [SWE-028] [SWE-029] [SWE-065.a] [SWE-065.b]
l. Verification and validation criteria. [SWE-028] [SWE-029] The “Criteria for evaluating results” item b.1,a.5 of Appendix A11, Software Test Procedures, where some or all of the criteria may be documented, can be referenced here in the SMP.
l. Acceptance criteria for the software (and if applicable any necessary conditions under which the acceptance criteria must be met). [SWE-028] [SWE-029] [SWE-034] The acceptance criteria and conditions may be recorded in this plan, the Software Test Plan and/or in the contractual agreement.
Examples of necessary conditions include operating under maximum loads, such as maximum number of simultaneous users or peak bandwidth capacity; and operational modes, such as startup, operations, shutdown, maintenance, and safing.
l. Verification and validation environments (software/hardware platform) if different than the environment defined above in item d. Engineering environment. [SWE-028] [SWE-029]
l. Describe how the project will record results of software testing, verification, and validation activities; and address and track to closure the software product defects found during those activities. [SWE-030] [SWE-031]
[SWE-069] The Software Test Reports or Software Problem Reports can be used to record defects and track them to closure. The Software Inspection Summary Report is used to record defects discovered during Software Inspections. The Software Change Requests can be used to record and track to closure issues identified with earlier life-cycle products like requirements and design.
l. Describe how the project will utilize Software Problem Reports as defined in Appendix A10 (e.g., Software Problem Reports will be used to track to closure problems and defects encountered during Software Integration Testing, End-to-end Testing, and Acceptance Testing; the reports will be maintained by the tester in the project’s problem resolution system). [SWE-065.c] [SWE-113]
l. Describe process for early identification of testing requirements that drive software design decisions (e.g., special system level timing requirements/checkpoint restart (watchdog timeout puts the system back to the start state)). [SWE-102.u] The software design can impact how easy or difficult testing will be. This process allows the test team to communicate test plans and participate in design decisions (e.g., involvement in design development and inspections) to improve the ease of testing.
l. Describe how the project will perform requirements validation to ensure that the software will perform as intended in the customer environment. [SWE-055] Requirements validation confirms that the software requirements accurately reflect the needs and expectations of the customer. Software Inspections (as specified below) are one method that can be used to fulfill this requirement.
l. {Safety-Critical} Additionally, describe how the project will verify that safety requirements are clear, precise, unequivocal, verifiable, testable, maintainable and feasible (e.g., perform a software inspection and include these quality characteristics in the inspection checklist). [NASA-STD-8719.13B:6.1.1.3]
l. Describe how the project will ensure that the implementation of each software requirement (e.g., code) is verified to the requirement. [SWE-067] If the implementation of each software requirement is verified through tests, then the “Test coverage” section of the Software Test Plan may be used to describe how the project will ensure that the implementation of each software requirement is verified.
l. Describe how the project will ensure that the software system (i.e., the code) is validated on the targeted platform or high-fidelity simulation, or reference the test plan that describes this. [SWE-073]
l. If software models, simulations, and analysis tools are required to verify or validate space-flight software or flight equipment, describe how the project will verify, validate, and accredit the software models, simulations, and analysis tools. [SWE-070] Information regarding specific verification and validation techniques and the analysis of models and simulations can be found in NASA-STD-7009, Standard for Models and Simulations (e.g., numerical accuracy, uncertainty analysis, and sensitivity analysis, as well as verification and validation for software implementations of models and simulations).
l. Describe how the project ensures that results from static analysis tool(s) are used in verifying and validating software code. [SWE-135] Exception: The use of static analysis tools is not required for maintenance of and modifications to heritage/reuse code for facilities of Class C safety critical or for Classes D and E safety critical; however, the verification and validation activities, methods, criteria, etc. to be used for these codes are documented in other sections of this verification and validation plan. [LaRC-2012-001 Waiver]
l. Static analysis tools may not be available for some platforms or computing languages. If static analysis tools are unavailable, the project can document the alternate manual methods or procedures to verify and validate the software code. These manual methods or procedures will be referenced in the project’s Compliance Matrix against this requirement. [NPR7150.2A: 3.3.3]
l. Modern static code analysis tools can identify a variety of issues and problems, including but not limited to dead code, non-compliances with coding standards, security vulnerabilities, race conditions, memory leaks, and redundant code. While false positives are an acknowledged shortcoming of static analysis tools, users can calibrate, tune, and filter results to make effective use of these tools. Software Inspections of code items can include reviewing the results from static code analysis tools. [NPR7150.2A: 3.3.3]
l. Describe how the project will ensure that coding methods, standards, and/or criteria are adhered to and verified. [SWE-061] [NASA-STD-8719.13B:6.3.1.2] Static analysis tools and peer review of code are common methods for ensuring that code adheres to coding standards.

l. Describe how the project will validate and accredit software tool(s) required to develop or maintain Class A, Class B, Class C or safety-critical software; this is done regardless of the software classification of the tool (i.e., even if the tool has a lower software classification). [SWE-136]
l. Examples of software tools include, but are not limited to, compilers, code-coverage tools, development environments, build tools, user interface tools, debuggers, and code generation tools.
l. The following provide examples of tool validation.
l. For compilers: running representative code through two or more compilers and comparing the outputs of the resulting executables to see if the results are the same; or documenting uses of the complier on previously successful projects; or obtaining acceptable documentation regarding vendor compliance with ANSI language standard and vendors list of known issues.
l. For debuggers: running representative code through the tool and assessing the results against evaluation criteria.
l. The term “accredit” is defined as: The official acceptance of a software development tool, model, or simulation (including associated data) to use for a specific purpose. [NPR 7150.2A:A.2] Successful completion of tool validation could also be used as the basis for official acceptance of the tool, thereby achieving both validation and accreditation of the tool simultaneously.
l. Software Inspections. “Software Peer Reviews/Inspections (hereafter referred to as Software Inspections) are performed following defined procedures covering the preparation for the review, conducting the review itself, documenting results, reporting the results, and certifying the completion criteria. When planning the composition of a software inspection team, consider including representatives from software testing, system testing, software assurance, and stakeholders of the previous and next life-cycle phase.” [NPR7150.2A:4.3]
l. Define which products the project will perform Software Inspections on. At a minimum, the following software products will be inspected: [SWE-087] [SWE-137]
l. Software Management Plan. [SWE-137.a]
l. Software Configuration Management Plan. [SWE-137.b]
l. Software Assurance Plan. [SWE-137.d]
l. {Safety-Critical} Software Safety Plan.[SWE-137.e]
l. Software Test Plan. [SWE-087.b]
l. Software Maintenance Plan. [SWE-137.c]
l. Software requirements. [SWE-087.a] Requirements should undergo Software Inspection for correctness, consistency, clarity, completeness, traceability, feasibility, verifiability, and maintainability.
l. Design items – that the project identifies for Software Inspection (e.g., Software Design Descriptions, Interface Design Description, Software Data Dictionaries). [SWE-087.c]
l. Software code– that the project identifies for Software Inspection. [SWE-087.d] This requirement does not apply to computer-generated code. Instead, the Software Inspection is performed on the higher level, developer written, model or text used to computer-generate the code, and the code generator is validated and accredited as required by item h.10 above. At their discretion, projects may still elect to inspect computer-generated code. [NODIS Comment #277]
l. Record which process the project will use for Software Inspections; use one of the following options: [SWE-102.t]
l. Option 1: For each Software Inspection, NASA/SP-2007-6105, NASA System Engineering Handbook, Appendix N: Guidance on Technical Peer Review/Inspections, will be followed. [SWE-088] [SWE-102.t] [SWE-119] If this option is used, the following additional items must be defined: [SWE-088]
l. The documented checklist that will be used to evaluate the work products during each type of Software Inspection. [SWE-088.a] (See Peer Review Inspection Checklists at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for example checklists.)
l. Documented entrance criteria (i.e., readiness criteria that define actions that must be completed prior to each type of Software Inspection), [SWE-088.b]
Examples: the document to be reviewed has been spell checked, there are no widow or orphan off-page connectors in the design, the code has been successfully compiled without errors, and the product conforms to project standards and content requirements.
l. Documented success criteria (i.e., completion criteria that define actions that must be done for each type of product before the product can pass the Software Inspection and proceed to the next life-cycle activity). [SWE-088.b]
Examples: all high severity defects have been corrected and no secondary defects (new errors) have been introduced, the entrance criteria are still met, the resolution to all open issues/action items have been documented, change requests/problem reports/waivers have been written, and the Software Inspections Summary Report is complete.
l. The required participants are identified for each Software Inspection. [SWE-088.d]
l. How the project will record and retain Appendix A14, Software Inspection Summary Report data. [SWE-030] [SWE-031] [SWE-089] [SWE-119] (See the {Peer Review Toolkit, TAB: “Issues & Concerns”} or the {Peer Review Inspection Forms} at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for example templates that could be used to collect the required data.)
Note: To obtain access to the NASA System Engineering Handbook, go to:
https://nen.nasa.gov/syseng/NASA-Systems-Engineering-Handbook.pdf
l. Option 2: For each Software Inspection, the Peer Review Toolkit instructions will be followed and the toolkit TAB: “Issues & Concerns” will be completed and retained in the branch or project files. [SWE-030] [SWE-031] [SWE-088 thru SWE-088.d] [SWE-089] [SWE-102.t] [SWE-119 thru SWE-119.f] (The Peer Review Toolkit is located at: https://sites-e.larc.nasa.gov/sweng/supporting-products/)

l. Option 3: Document an alternate Software Inspection process which, at a minimum, includes: [SWE-088] [SWE-102.t] [SWE-119]
l. Documenting entrance criteria for each planned Software Inspection (i.e., readiness criteria that define the actions that must be completed prior to each type of Software Inspection). [SWE-088.b] Examples: the document to be reviewed has been spell checked, there are no widow or orphan off-page connectors in the design, the code has been successfully compiled without errors, and the product conforms to project standards and content requirements.

l. Documenting success criteria for each planned Software Inspection (i.e., completion criteria that define the actions that must be completed before the product can pass the Software Inspection and proceed to the next lifecycle activity). [SWE-088.b] Examples: all major defects have been corrected and no secondary defects (new errors) have been introduced, the readiness criteria are still met, the resolution to all open issues/action items have been documented, change requests/problem reports/waivers have been written, and the Software Inspections Summary Report is complete.
l. Identifying required participants for each planned Software Inspection. [SWE-088.d]
l. The documented checklists that will be used to evaluate the work products during each type of Software Inspection. [SWE-088.a] (See: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for example Peer Review Inspection Checklists)
l. How the project will record and track defects and actions identified in the Software Inspections until they are resolved. [SWE-088.c] [SWE-030] [SWE-031] [SWE-119.f]
l. How the project will record and retain Appendix A14, Software Inspection Summary Report data. [SWE-119] [SWE-030] [SWE-031] (See the {Peer Review Toolkit, TAB: “Issues & Concerns”} or the {Peer Review Inspection Forms} at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for example templates that could be used to collect the required data.)
Note:

· The project can use system reviews (e.g., System Requirements Review) as Software Inspections if the system review complies with the Software Inspection requirements of this procedure. [NODIS Comment #274]

· In Option 1 and Option 2, note that how the moderator is selected (and how the author is selected if multiple authors exist) is determined by the project.

· Additional guidelines for Software Inspections are contained in NASA-STD-2202-93, NASA Software Formal Inspection Standard. [NPR 7150.2A:4.3.1] (See: https://standards.nasa.gov/) This document can also be used to levy Software Inspection requirements on contracts.

· Additional instruction on Software Inspections is contained in the Instructional Handbook for Formal Inspections at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ .
m. Stakeholder involvement. [SWE-102.j] [SWE-102.k] At a minimum include the user and the *acquirer involvement. Identify the stakeholders whose involvement in project activities is required and define their roles, responsibilities, and authorities in those activities. A project team often requires inputs or actions from stakeholders outside of the team to accomplish key activities during software development, maintenance, and operations. Common activities requiring stakeholder involvement are requirements development, approvals (e.g., plans, requirements), software inspections, progress reviews, milestone reviews, technical interchange meetings, boards and panels (e.g., configuration control board), quality assurance audits, configuration audits, testing, and software acceptance. These activities and the necessary stakeholder involvement may be described in other sections. However, summarizing stakeholder involvement in one section of the plan (e.g., using a matrix with stakeholders on one axis and activities on the other) facilitates and documents agreement on the time and resources to be provided by stakeholders.
n. Risk management. Define how the project will identify, analyze, plan, track, control, communicate, and document software risks in accordance with NPR 8000.4, Agency Risk Management Procedural Requirements. (See: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for related tools: “Project Status Issues Risk Workbook Template” and “Risk List example”) [SWE-086] [SWE-102.l] [SWE-032.e]
o. *Security Policy. [SWE-102.m] Define the rules for need-to-know and access-to-information. [IEEE 12207.0:1995 5.2.4.5.l] Document the project’s standards for accessing, communicating, and handling the following types of information: sensitive but unclassified (SBU), personally identifiable information (PII), restricted rights, proprietary, and classified. The SMP may reference the organization’s information security plan if it sufficiently defines the security policy for information used by the project.
p. * External approvals and data rights. [SWE-102.n]
p. *If applicable, any additional certifications or approval required by such means as regulations. [SWE-102.n]
p. *If applicable, any additional, proprietary, usage, ownership, warranty, and licensing rights not already covered in this SMP, item q, Off-the-shelf (OTS) software (e.g., Sensitive but Unclassified, International Traffic in Arms Regulation). [SWE-102.n] [SWE-105.b.5]
q. Process for scheduling, tracking, and reporting. [SWE-102.o] Many of the metrics discussed under item o, Software metrics, in this SMP can be used to fulfill the following requirements.
q. Define how the project will track actual results and performance of software activities against the Software Management Plan, the Software Configuration Management Plan, the Software Test Plan, the Software Assurance Plan, the Software Maintenance Plan, and, for safety-critical software, the Software Safety Plan. [SWE-024] [SWE-102.o] [SWE-103] [SWE-104] [SWE-105] [SWE-106] [SWE-130] If the activities in all these software plans are included in the SMP schedule, then tracking actual results and performance of software activities against the SMP schedule could be used to satisfy this requirement.
q. Include a description of how the project will maintain schedules and cost estimate(s) defined in the SMP. [SWE-016] [SWE-015] For example, the Software Manager will use inputs from the team leads and Microsoft Project to create and maintain the schedule defined above in item e.2, Software schedules of this SMP. The Software Manager will update the schedule on the first Tuesday of each month with input from the team leads to include actual progress against the schedule and added or deleted tasks. In addition, actual costs will be tracked in the project costing spreadsheet.
q. Describe how the project will ensure that corrective actions are taken, recorded, and managed to closure when actual results and performance deviate from the software plans. [SWE-025] For example, when deviations are significant enough to warrant corrective action, the corrective actions will be recorded in the project’s action tracking system. The status of actions will be tracked in the action tracking system and reviewed monthly until closed.
q. Define the reviews of software activities, status, and results that the project will hold regularly with the project stakeholders; the stakeholders that the reviews will be held with; and the frequency or schedule for the reviews. [SWE-018]
q. Describe how the project will track issues from reviews to resolution. [SWE-018] For example, issues will be recorded in the meeting minutes and issue status will be reviewed in subsequent meetings until issues are closed.
r. Training.
r. Plan for training of personnel, including project-unique software training needs. [SWE-102.p] [SWE-017] This requirement is intended to address skills needed to support the software activities on a project. Not all skills required to accomplish a software project are “software” skills. The software engineering staff may require training in other domains to accomplish the project. [NPR 7150.2A:2.2.5 modified]
r. Describe how the project will track and ensure training of project personnel. [SWE-017] [SWE-024] This description could be as simple as putting planned training on the schedule and tracking it to ensure it is conducted.
s. Life cycle. [SWE-102.q] [SWE-019]
s. Select and document the software life-cycle model; include life-cycle phases to cover the following: requirements, design, coding, integration, test, delivery, and maintenance activities. [SWE-019] [SWE-102.q] [SWE-049] [SWE-0 50] [SWE-051] [SWE-056] [SWE-060] [SWE-065] [SWE-074] [SWE-077] The following are additional phases that may be included in the life-cycle model: acceptance, operation, and retirement. [SWE-034] [SWE-075] [SWE-102.q] For additional guidance on choosing a life cycle, refer to “Guidance on Selecting Life Cycle and Development Approach” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/
The integration phase covers software-to-software integration and software-to-hardware integration.
[SWE-102.q] Projects can combine the integration and test phases. A project can plan multiple integration and test phases depending on the levels of integration that require participation from the software project.
s. Include phase transition criteria for each life-cycle phase. [SWE-019]
The following are typical phase transition criteria:

s. Elimination of all major defects identified by reviews (e.g., defects identified by Peer Reviews/ Inspections of requirements, design, code).
s. Successful completion of review entrance and exit criteria.

Examples of reviews used for phase transitions are informal reviews (e.g., demonstration to gain user group feedback) and formal milestone reviews (e.g., Software Inspections, software requirements review, preliminary design review, critical design review, test readiness reviews, and customer acceptance or approval reviews). [SWE-019]
t. Software documentation tree. [SWE-102.s] It is important to define who is responsible for and on the approval list for each document.
u. Software metrics. [SWE-102.v] [SWE-032.d] [NPR 7150.2A:4.4] Many of the metrics discussed below can also be used to fulfill requirements in item m, Process for scheduling, tracking, and reporting of this SMP. For additional guidance on determining software metrics, see “System and Software Metrics for Performance-Based Contracting” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ .
u. Establish and document the project’s software measurement objectives that cover, at a minimum, the following areas: [SWE-090] [SWE-091] [SWE-117]
u. Software progress tracking measures. [SWE-91.a] [SWE-117.a]
u. Software quality measures. [SWE-91.c] [SWE-117.c]
u. Software requirement volatility. [SWE-91.d] [SWE-117.d]
u. Software characteristics. [SWE-91.e] [SWE-117.e]
u. Software functionality measures. [SWE-91.b] [SWE-117.b]
{Class D and E} The above list may be tailored without Technical Authority approval; however, software quality measures cannot be omitted.
Software measurement objectives are aligned with the management and technical goals for the project. For example: remain within 10% of the planned cost and schedule, defect density less than .2 defects per thousand source lines of code by initial delivery (i.e., # of open defects / # of thousand source lines of code), resolve all “to be determined” software requirements by X date, limit software requirements additions to less than X percent after baseline, deliver all specified software functionality.

u. Select and document the project’s software measures that will be used to assess progress against the project’s software measurement objectives. [SWE-117 a thru SWE 117.e] [SWE-091 thru SWE-91.e]
Examples of software progress tracking measures are:
u. Software resources such as budget and effort (planned vs. actual).
u. Software development schedule tasks (e.g., milestones) (planned vs. actual).
u. Implementation status information (e.g., number of computer software units in design phase, coded, unit tested, and integrated versus the number planned).
u. Test status information (e.g., number of tests developed, executed, passed).
u. Number of re-plans/baselines performed.
Examples of software quality measures are:
u. Number of software Problem Reports/Change Requests (new, open, closed, severity).
u. Review of item discrepancies (open, closed, and withdrawn).
u. Number of Software Inspections (planned vs. actual).
u. Software Inspection information (e.g., effort, review rate, defect data). Data collected in Appendix A14, Software Inspection Summary Report, provides this type of software quality data.
u. Number of software audits (planned vs. actual).
u. Software audit findings information (e.g., number and classification of findings).
u. Number of requirements verified.
u. Status of requirements validation.
u. Results from static code analysis tools.
Examples of software requirement volatility measures are:
(a) Number of software requirements.
(b) Number of software requirements changes (additions, modifications, deletions) per month.
(c) Number of “to be determined” items.
Examples of software characteristics are:
u. Project name.
u. Language.
u. Software domain (flight software, ground software, Web application).
u. Number of source lines of code by categories (e.g., new, modified, reuse) (planned vs. actual).
u. Computer resource utilization in percentage of capacity.
Note that some characteristics are already required to be reported: (1) the NASA Software Inventory, which is updated every 2 years (see Section 1, Step 3.b.4 of this procedure) and (2) LaRC Software Metrics (see below in item q.6 of this SMP). Those characteristics alone are sufficient to fulfill this requirement for software characteristics.
Examples of software functionality measures are:

u. Number of requirements included in a completed build/release (planned vs. actual).

u. Function points (planned vs. actual).

u. Define how the project will collect and record the project’s software measures, on which configuration items the measures will be collected, and the units of measure that will be used in collection (e.g., hours spent to date in testing the flight software configuration item tracked in quarter hour decimal increments (1, 1.25, 1.5, and 1.75)). [SWE-092] [SWE-117] Software Measures may be collected from various sources (e.g., Microsoft Project, the project’s configuration management tool, the financial management system, and project staff).
u. Define how the project will analyze the project’s software measures.[SWE-093] [SWE-117] For example define:

u. The data analysis to be conducted.
u. The content of the Software Metrics Report that will be prepared.
u. Define the periodicity at which the project will report measurement analysis results and to whom. [SWE-094]
[SWE-117] For example, the project’s software measures will be collected and analyzed monthly and will be reported every two months to the parent project or Line Manager.
u. Define how the project will collect the LaRC metrics defined in Appendix A15, LaRC Software Metrics Collection Data, and who will be responsible for submitting the metrics at the milestones specified in Appendix 15. [SWE-091] [SWE-094] For example: “The milestones specified in Appendix A15 are included in the SMP software schedule. At each milestone the Software Manager will collect and submit to the Web site all required data within 15 working days.”
v. *Content of software documentation to be developed on the project. [SWE-102.w] This applies to document requirements outside those defined in this LMS CP.
w. Off-the-shelf (OTS) software. Management, development, and testing approach for handling any OTS (i.e., commercial-off-the-shelf (COTS), government-off-the-shelf (GOTS), modified-off-the-shelf (MOTS), reused, or open source) software component(s) that are included within a NASA system or subsystem. [SWE-102.x] [SWE-027.e] The OTS requirements below apply only when the OTS software elements (e.g., math libraries, database programs) are to be incorporated or used with or within a NASA application. The following requirements do not apply to stand-alone desktop applications (e.g., word processing programs, presentation programs). [NPR7150.2A: 2.3] [NPR7150.2A: Appendix E]
w. When a COTS, GOTS, MOTS, reused, or open source software component is to be used with or within a NASA system, the following requirements are to be satisfied: [SWE-027]
w. The requirements that are to be met by the software component are identified. [SWE-027.a]
w. The software component includes documentation to fulfill its intended purpose (e.g., usage instructions). [SWE-027.b]
w. Proprietary, usage, ownership, warranty, licensing rights, and transfer rights have been addressed.
[SWE-027.c] [SWE-105.b.5] License(s) for OTS software should be reviewed by the Office of Chief Counsel.
[NPR 7150.2A:2.3.1 modified]
w. Future support for the software product is planned. [SWE-027.d] (This may be documented in the Software Maintenance Plan.)
w. The software component is verified and validated to the same level of confidence as would be required of a developed software component. [SWE-027.e] The project should determine which requirements in Appendix A1.h, Verification and validation plan, of this SMP, will be applied to the software component. For those requirements that cannot be applied, the project should determine if risk mitigation measures need to be performed. Before the project initiates procurement of the software, the project determines the methods, activities, and criteria for verifying and validating the OTS software to the same level of confidence as developed software. [NPR 7150.2A:2.3.1 modified]
Note: When planning for the use of OTS software, consider the following: [NPR 7150.2A:2.3.1 modified]
w. A supplier agreement to deliver or escrow source code or a third-party maintenance agreement.

w. How the project will maintain the OTS software and the cost of maintenance.

w. Changes to the software management, operations, or maintenance plans due to the use or incorporation of OTS software. Changes should address the impact, if any, of license terms for the OTS software.

w. An agreement that gives the project access to defects discovered by the community of users. When available, the project can consider joining a product users’ group to obtain this information.

w. A risk mitigation plan to cover:

w. Loss of support or maintenance for the product (or a version of the product),

w. Loss of the product or product version (e.g., license revoked, recall of product, etc.).

w. Consult with the Office of Chief Counsel and the contracting officer regarding the inclusion of COTS, GOTS, MOTS, reused, or open source software within a NASA system or subsystem. [LaRC Office of Chief Counsel]
w. Additional requirements on the inclusion of open source software are in NPR 2210.1C Release of NASA Software, section 1.8.3. (NPR 2210.1C can be found in the NASA Online Directives Information System at http://nodis3.gsfc.nasa.gov/) [LaRC Office of Chief Counsel]
w. Input logic (e.g., a macro, script, algorithm, state machine, block diagram) is developed software, and as such, the project-developed input logic (used for input to an OTS product) does not fall under the above requirements; however, the rest of the requirements in this LMS procedure apply to input logic and are to be followed. (Input logic does not include configuration settings or switches.) [NPR 7150.2A NODIS review]
x. Operations and retirement.
x. Plan for software operations activities. [SWE-075] For example: performing specific operations, training operators, or providing support when problems are encountered during operations.
x. Typically, retirement activities are covered in the Software Maintenance Plan. However, if there is no need for a Software Maintenance Plan (e.g., if the project ends after a flight test or demonstration and the software is then retired), this section should cover the plans for software retirement activities. [SWE-075]
Appendix A2: Software Configuration Management Plan

The Software Configuration Management Plan shall include: [SWE-103] [SWE102.r] [SWE-079] [SWE-032.b]
y. The project organization(s) that participates in the software configuration management process [SWE-103.a]
z. Assigned responsibilities and authority for the software configuration management organization and implementation on the project. [SWE-079] [SWE-103.b]

aa. References to the software configuration management policies and directives that apply to the project (e.g., this LMS CP and other project or branch configuration management documented requirements). [SWE-103.c]

ab. Describe all functions and tasks required to manage the configuration of the software, including the following: [SWE-079] [SWE-103.d]
ab. Configuration identification: identification of the software configuration items (e.g., software documents, code, data, tools, models, scripts) and their versions to be controlled for the project. [SWE-081] [SWE-103.d] Also include the scheme for: identification of software configuration items, establishment of baselines, and version references. [ISO/IEC12207.0:6.2.2.1]
ab. {Safety-Critical} Place the following software products under configuration control: Software Safety Plan, Software Requirements Specification, Software Design Description, Interface Design Description, Software Data Dictionary, code, data, Software Test Plan, Software Test Procedures, executables, traceability system, simulators, and models. [NASA-STD-8719.13B:5.2.3.2, 5.7.2, & 5.9]
ab. Configuration control: [SWE-103.d]
ab. Describe the levels of control each software configuration item must pass through; [SWE-082]
different levels of control are appropriate for different configuration items and for different points in time. Initially, it may be sufficient to maintain version control (i.e., the version of the work product in use at a given time, past or present, is known, and changes are incorporated in a controlled manner). Version control is usually under the sole control of the configuration item author(s). As the configuration item matures, it will become necessary to place it under baseline configuration management. This type of control defines and establishes baselines at predetermined points. These baselines are formally reviewed and agreed on, and serve as the basis for further development of the configuration item.
[CMMI-DEV V1.2 GP 2.6] Baselines are changed through documented and approved Change Requests.
ab. At each level of control, define the persons or groups with authority to approve changes and to make changes. [SWE-082] {Safety-Critical} Changes to safety-critical baselined software require approval by software safety personnel. [NASA-STD-8719.13B:5.9.2.1] The project may establish a configuration control board to review and approve Change Requests and baselines.

ab. Describe the process to request and approve changes using Software Change Requests as defined in Appendix A9. [SWE-113] Include evaluation of the change requests, disposition and tracking of the change requests, and implementation and verification of the modified software configuration items. [SWE-080]
[SWE-079] [SWE-082] [SWE-113.g] [ISO/EIA-12207.0:6.2.3.1]
ab. Describe the process for distributing changes and maintaining past versions. [SWE-082] This item covers internal distribution of changes within the project and assures the ability to retrieve past versions for analysis, to roll back defective changes, or to support users of older versions. Item h. below describes the process for delivery and release.
ab. Status accounting: prepare and maintain records of the configuration status of configuration items [SWE-083] [SWE-103.d] (e.g., records that show the baselines, the status of change requests, revision history of controlled items, latest item versions, release identifiers, number of releases, and comparisons of releases). [ISO/IEC12207.0:6.2.4.1].
ab. Configuration audits and reviews to determine the correct version of the configuration items and verify that the configuration items conform to the documents that define them (whether their design and code reflect up-to-date technical requirements). [SWE-084] [SWE-103.d] [ISO/IEC12207.0:6.2.5.1] See IEEE-STD-828 Section 3.3.4: Configuration Evaluation and Reviews for additional guidance on configuration audits.
ac. Schedule information, which establishes the sequence and coordination of identified activities and for all events affecting the plan’s implementation. [SWE-103.e]
ac. {Safety-Critical} Place all software and documentation (including source code, executables, test plans and procedures, and associated data) under configuration control prior to verification of safety-critical requirements. [NASA-STD-8719.13B:5.9.1]
ad. Resource information, which identifies the software tools, techniques, and equipment necessary for the implementation of the activities. [SWE-103.f]
ae. The activities and responsibilities necessary to ensure continued configuration management planning during the life cycle of the project. [SWE-103.g] [SWE-014]
af. Describe the procedures for the storage, handling, delivery, release, and backup of deliverable software products and data. [SWE-085] [SWE-103.h]
Appendix A3: Software Test Plan

The Software Test Plan shall include: [SWE-104] [SWE-065.a]
ag. Testing environment(s), site(s), personnel, and participating organizations. [SWE-028][SWE-104.k] When the project needs to plan in advance for a particular software test environment (e.g., the environment does not exist and it must be developed, or environments needing the scheduling of particular resources or a specific configuration set up in order to run the tests), describe the software test environment at each such intended test site. Reference may be made to the Software Management Plan for environment, staffing and organizational resources described there.
ag. Name of test site(s). [SWE-104.k] Identify one or more test sites to be used for the testing; the sections below describe the software test environment at the site(s). [J-STD-016:E.2.2(3)]
(a) Software. [SWE-104.k] Identify by name, number, and version, as applicable, the software (e.g., operating systems, compilers, communications software, related applications software, databases, input files, code auditors, dynamic path analyzers, test drivers, preprocessors, test data generators, test control software, other special test software, firmware, post processors) necessary to perform the planned testing activities at the test site(s). Describe the purpose of the software, describe its media (compact disk, etc.), identify those items that are expected to be supplied by the site, and identify any classified processing or other security or privacy protection issues associated with the software. [J-STD-016:E.2.2(3)]
(b) Hardware. [SWE-104.k] Identify by name, number, and version, as applicable, the computer hardware, interfacing equipment, communications equipment, test data reduction equipment, apparatus such as extra peripherals (drives, printers, plotters), test message generators, test timing devices, and test event records, etc., that will be used in the software test environment at the test site(s). Describe the purpose of the hardware, state the period of usage and the number of each needed, identify those that are expected to be supplied by the site, and identify any classified processing or other security or privacy protection issues associated with the hardware. [J-STD-016:E.2.2(3)]
(c) Other materials. Identify and describe any other materials needed for the testing at the test site(s). These materials may include manuals, software listings, media containing the software to be tested, media containing data to be used in the tests, sample listings of output, and other forms or instructions. Identify those items that are to be delivered to the site and those that are expected to be supplied by the site. The description should include the type, layout, and quantity of the materials, as applicable. Identify any classified processing or other security or privacy protection issues associated with the items.
[J-STD-016:E.2.2(3)]
(d) Proprietary nature, acquirer’s rights, and licensing. Identify the proprietary nature, acquirer’s rights, and licensing issues associated with each element of the software test environment. [J-STD-016:E.2.2(3)]
(e) Installation, testing, and control. Identify the developer’s plans for performing each of the following, possibly in conjunction with personnel at the test site(s):

(1) Acquiring or developing each element of the software test environment.
(2) Installing and testing each item of the software test environment prior to its use.
(3) Controlling and maintaining each item of the software test environment. [J-STD-016:E.2.2(3)]
(f) Participating organizations. [SWE-104.k] Identify the organizations that will participate in the testing at the test sites(s) and the roles and responsibilities of each. [J-STD-016:E.2.2(3)]
(g) Personnel. [SWE-104.k] Identify the number, type, and skill level of personnel needed during the test period at the test site(s), the dates and times they will be needed, and any special needs, such as multishift operation and retention of key skills to ensure continuity and consistency in extensive test programs.
[J-STD-016:E.2.2(3)]
(h) Orientation plan. Describe any orientation and training to be given before and during the testing. This information should be related to the personnel needs given in Section a.1.g Personnel. This training may include user instruction, operator instruction, maintenance and control group instruction, and orientation briefings to staff personnel. If extensive training is anticipated, a separate plan may be developed and referenced here. [J-STD-016:E.2.2(3)]
(i) Tests to be performed. Identify, by referencing the below Section i. Planned tests, the tests to be performed at the test site(s). [J-STD-016:E.2.2(3)]
ah. Test levels (separate test effort that has its own documentation and resources, e.g., component, integration, and system testing). [SWE-104.a] Describe the levels at which testing will be performed, for example, software item level or system level. [J-STD-016:E.2.2(4.1.1)]
ai. Test types: [SWE-104.b] In the below sections, software integration testing, systems integration testing, end-to-end testing, and acceptance testing may all be combined.
ai. Unit testing. [SWE-062] [SWE-104.b.1] Unit Testing is defined as: Testing of individual… software units or groups of related units. [IEEE STD 610.12-1990]
ai. Software integration testing. [SWE-104.b.2]
ai. Systems integration testing. [SWE-104.b.3]

ai. End-to-end testing. [SWE-104.b.4] The objective of end-to-end testing is to demonstrate interface compatibility and desired total functionality among different elements of a system, between systems, and in systems as a whole. Interfaces include software/software, hardware/software, and system/system data exchanges. In addition, end-to-end testing includes complete operational scenarios
 across system components to verify that performance requirements are met. End-to-end testing verifies that the data flows throughout the multi-system environment are correct, that the system provides the required functionality, and that the outputs at the eventual end points correspond to expected results. [Based on draft NPR2820]
ai. Acceptance testing. [SWE-104.b.5] Acceptance Testing is defined as: (1) Formal testing conducted to determine whether or not a system satisfies its acceptance criteria and to enable the customer to determine whether or not to accept the system. (2) Formal testing conducted to enable a user, customer, or other authorized entity to determine whether to accept a system or component. [IEEE STD 610.12-1990] Acceptance criteria may be documented in this plan, or in Appendix A1. Software Management Plan, under item h. Verification and validation plan, and/or in the contractual agreement.
ai. Regression testing. [SWE-104.b.6] Regression testing is defined as: selective retesting of a system or component to verify that modifications have not caused unintended effects and that the system or component still complies with its specified requirements. [IEEE STD 610.12-1990]
aj. The test classes (designated grouping of test cases). [SWE-104.c] Describe the classes of tests that will be performed (for example, timing tests, erroneous input tests, maximum capacity tests). [J-STD-016:E.2.2(4.1.2)]
ak. The general test conditions. [SWE-104.d] Describe conditions that apply to all of the tests or to a group of tests. For example: “each test should include nominal, maximum, and minimum values;” “each test of type x should use live data;” “execution size and time should be measured for each software item.” Include a statement of the extent of testing to be performed and rationale for the extent selected. The extent of testing can be expressed as a percentage of some well-defined total quantity, such as the number of samples of discrete operating conditions or values, or other sampling approach. Also included should be the approach to be followed for retesting/regression testing. [J-STD-016:E.2.2(4.1.3)]
al. *Test progression. [SWE-104.e] In cases of progressive or cumulative tests, this section should explain the planned sequence or progression of tests. [J-STD-016:E.2.2(4.1.4)]
am. Data recording, reduction, and analysis. [SWE-104.f] Identify and describe the data recording, reduction, and analysis procedures to be used during and after the tests identified in this Software Test Plan. These procedures should include, as applicable, manual, automatic, and semiautomatic techniques for recording test results, manipulating the raw results into a form suitable for evaluation, and retaining the results of data reduction and analysis. [J-STD-016:E.2.2(4.1.5)]
an. Test coverage (breadth and depth) or other methods for ensuring sufficiency of testing. [SWE-104.g] Test coverage is defined as: The degree to which a given test or set of tests addresses all specified requirements for a given system or component. [IEEE STD 610.12-1990] The project evaluates test coverage to assure that the implementation of each requirement is verified to the requirement. Requirements not verified by test should be covered by the Verification and validation plan item h.6 of Appendix A1, Software Management Plan. [SWE-067]

ao. Planned tests. [SWE-104.h] Identify the items to be tested and the test associated with each item. (Note: the “tests” in this plan are collections of test cases. There is no intent to describe each test case in this document.
[J-STD-016:E.2.2(4.2.x)]) Test cases are documented in Appendix A11, Software Test Procedure.
ao. Item(s) to be tested. [SWE-104.h] Identify a software item, subsystem, system, or other entity by name, and describe the testing planned for the item(s) as follows. [J-STD-016:E.2.2(4.2.x)]
(a) Project-unique identifier of a test. [SWE-104.h] Identify a test by project-unique identifier and provide the information specified below for the test.
(1) Test objective.
(2) Test level.
(3) Test types.
(4) Test class.
(5) Verification method(s)
 as specified in the Software Requirements Specification.
(6) Identifier of the software item requirements and, if applicable, software system requirements addressed by this test. (Alternatively, this information may be provided in the below section k. Requirements Traceability.)
(7) Special requirements (for example, 48 hours of continuous facility time, simulation, extent of test, use of a special input or database).
(8) Type of data to be recorded.
(9) Type of data recording/reduction/analysis to be employed.
(10) Assumptions and constraints, such as anticipated limitations on the test due to system or test conditions: timing, interfaces, equipment, personnel, database, etc.
(11) Safety, security and privacy protection considerations associated with the test. [J-STD-016:E.2.2(4.2.x.y)]
ap. Test schedules. [SWE-104.i] Contain or reference the schedules for conducting the tests identified in this plan. If applicable, include:
ap. A listing or chart depicting the sites at which the testing will be scheduled and the time frames during which the testing will be conducted.
ap. A schedule for each test site depicting the activities and events listed below, as applicable, in chronological order with supporting narrative as necessary:
ap. On-site test period and periods assigned to major portions of the testing.
ap. Pretest on-site period needed for setting up the software test environment and other equipment, system debugging, orientation, and familiarization.
ap. Collection of database/data file values, input values, and other operational data needed for the testing.
ap. Conducting the tests, including planned retesting.
ap. Preparation, review, and approval of the Software Test Report. [J-STD-016:E.2.2(4.5)]
aq. Requirements traceability (or verification matrix). [SWE-104.j]
aq. Traceability from each test identified in this plan to the software item requirements and, if applicable, software system requirements it addresses.
aq. Traceability from each software item requirement and, if applicable, each software system requirement covered by this test plan to the test(s) that address it. The traceability should cover the software item requirements in all applicable Software Requirements Specifications and associated Interface Design Description, and, for software systems, the system requirements in all applicable system/subsystem specifications and associated system-level interface specifications. [J-STD-016:E.2.2(6)]
Appendix A4: Software Maintenance Plan

Maintenance is the process of modifying a software system or component after delivery to correct faults, improve performance or other attributes, or adapt to a changed environment. [IEEE 610.12-1990]

Note: Development and tracking of required upgrade intervals, including implementation plans (e.g., planned upgrades on an annual basis) are covered in the Software Management Plan.

The Software Maintenance Plan may be included in the Software Management Plan or Software Configuration Management Plan or be a separate stand-alone plan.

The Software Maintenance Plan shall include the following: [SWE-105] [SWE-074] [SWE-075]
ar. Plan information for the following activities: [SWE-105.a] [SWE-074]
ar. Maintenance process implementation. [SWE-105.a.1] [SWE-085]
(a) How detected problems will be reported using the Software Problem Report defined in Appendix A10. [SWE-113]
(b) How modification requests will be documented using the Software Change Request defined in Appendix A9 (or reference the Software Configuration Management Plan section(s) that address handling of Software Change Request). [SWE-113]
(c) How status of the problems and modifications will be tracked using the Software Problem Report or Software Change Request. [SWE-080] [ISO/EIA 12207.0: 6.8.1.1.a & 5.5.1.2 modified]
(d) *How relevant parties will be notified of the existence of the problems as appropriate. [ISO/EIA 12207.0: 6.8.1.1.a & 5.5.1.2 modified]
(e) How the project will ensure that modifications have been performed in accordance with the Software Configuration Management Plan. [SWE-103] [ISO/EIA 12207.0: 6.8.1.1 & 5.5.1 modified]
ar. Problem and modification analysis. [SWE-105.a.2] [SWE-080] [SWE-113]
(a) How the project will analyze proposed problems/changes and record the results in the Software Problem Report or Software Change Request. [SWE-080] [SWE-113] For reported problems, the project should replicate or verify the problem and determine its root cause. For problems and changes, the analysis should include options for implementing the modification, and the impact of the proposed implementation to cost and schedule. [ISO/EIA 12207.0: 5.5.2 modified.]
(b) How the project will disposition the Software Problem Report or Software Change Request. [SWE-113]
[SWE-080] This should include who is the authority for approval/disapproval and closure of proposed modification (or reference the appropriate section of the Software Configuration Management Plan where this is recorded). [ISO/EIA 12207.0: 5.5.2.5 modified]
ar. Modification implementation. [SWE-105.a.3]
(a) How the project will use Section 1: Perform Software Activities of this LMS CP to implement the modifications. [SWE-050] [SWE-056] [SWE-065] The project will analyze requirements, designs, and other documentation to determine if changes/updates are needed [SWE-105.b.4] and document the software units and documentation that will require change in the Software Problem Report or Software Change Request. Additionally, test and evaluation criteria for testing and evaluating the modified and the unmodified parts (software units, software items, and configuration items) of the system will be documented in the Software Test Plan and Software Test Procedure. The test results will be documented in the Software Test Report. [ISO/EIA 12207.0: 5.5.3 modified]
(b) How the project will ensure that problems have been resolved, changes have been correctly implemented, and no additional problems have been introduced. [SWE-80] [ISO/EIA 12207.0: 6.8.1.1 modified]
[ISO/EIA 12207.0: 5.5.1.3.b modified]
ar. Maintenance review/acceptance: how the project will close Software Problem Reports and Software Change Requests. [SWE-080] [SWE-113] [SWE-105.a.4]
ar. *Migration: [SWE-105.a.5] this section is completed if a system or software product (including data) is migrated from an old to a new operational environment.
ar. Software Retirement Activities. [SWE-075] [SWE-105.a.6] A retirement plan to remove active support of the software should include:
(a) Cessation of full or partial support after a certain period of time.
(b) Notification to all concerned when the scheduled retirement arrives. [ISO/EIA 12207.0: 5.5.6 modified]
(c) Archiving of the software product and its associated documentation.
(d) Accessibility of archived copies of data.

(e) Responsibility for any future residual support issues.
(f) Transition to new software product, if applicable.
ar. Software Assurance as defined in the Software Assurance Plan. [SWE-106] [SWE-105.a.7] [SWE-022] [SWE-032.c]
ar. Software Risk Assessment for all changes made during maintenance and operations. [SWE-086] [SWE-105.a.8]
as. Documentation of specific standards, methods, tools, actions, procedures, and responsibilities associated with the maintenance process. [SWE-085] [SWE-075] [SWE-105.b] In addition, the following elements are included: [SWE-105.b]

as. Approach for the scheduling, implementation, and tracking of software modifications (e.g., how the implementation and release of the modifications defined in approved Software Problem Reports and Software Change Requests are scheduled). [SWE-105.b.2]
as. The equipment and laboratories required for software implementation and verification. [SWE-105.b.3]
as. If the project has developed separate secondary backup software to the primary software, then plan for the maintenance of the secondary backup software (e.g., backup flight software, backup to the primary operational software). [SWE-105.b.6] This requirement applies when a separate copy of the flight or ground software runs on a separate processor – or – if separate software was developed to run the flight or ground system (a different developer wrote the code). Additional procedures may need to be put in place to address the secondary backup software. For example, if the primary software needs a patch, the secondary software needs to be evaluated to determine if it also needs a patch. The secondary and primary software need to remain synchronized.
as. The approach for the implementation of modifications to operational software (e.g., testing of software in development laboratory prior to operational use). [SWE-105.b.7]
as. If different than the delivery procedure specified in the Software Configuration Plan, describe the software delivery procedure; include distribution of the software to facilities and users of the software products and installation of the software in the target environment (including, but not limited to, spacecraft, simulators, Mission Control Center, and ground operations facilities). [SWE-105.b.8] [SWE-085]
Appendix A5: Software Requirements Specification
The Software Requirements Specification shall include: [SWE-049] [SWE-109]
at. System overview. [SWE-109.a] Briefly state the purpose of the system and the software to which this document applies. Summarize the history of system development, operation, and maintenance; identify the project sponsor, acquirer, user (e.g., Principal Investigator and science team), developer, maintenance organization, and other stakeholders; identify current and planned operating sites; and list relevant documents. [J-STD-016:F.2.4(1)]
au. Requirements. Define the requirements for all software items included in the NASA system. [SWE-109.b]
· The following subsections (b.1 through b.18) are used to define the software requirements for each subsystem or to define the software requirements for the software system as a whole. [J-STD-016:F.2.4.3]
· Specify the software item requirements, that is, those characteristics of the software item that are conditions for its acceptance. Each requirement is assigned a project-unique identifier to support testing and traceability. Each requirement should be stated in such a way that verification method(s) can be defined for it. [J-STD-016:F.2.4(3)]
· The degree of detail to be provided should be guided by the following rule: include those characteristics of the software item that are conditions for software item acceptance, and defer to design descriptions those characteristics that the acquirer is willing to leave up to the developer. If a given requirement fits into more than one subsection, it may be stated once and referenced from the other subsections. [J-STD-016:F.2.4(3)]
au. *Required states and modes. [SWE-109.b.2] If the software item is required to operate in more than one state or mode having requirements distinct from other states or modes, identify and define each state and mode. Examples of states and modes include: startup, calibration, housekeeping, idle, ready, active, post-use analysis, training, degraded, emergency, and backup. The distinction between states and modes is arbitrary. A software item may be described in terms of states only, modes only, states within modes, modes within states, or any other scheme that is useful. If states and/or modes are required, each requirement or group of requirements in this specification should be correlated to the states and modes. The correlation may be indicated by a table or by annotation of the requirements. [J-STD-016:F.2.4(3.1)]
au. Functional requirements. [SWE-109.b.1] Itemize the requirements associated with each function of the software item. A “function” is defined as a group of related requirements. The word “function” may be replaced with “capability,” “subject,” “object,” or other term useful for presenting the requirements. If the functionality can be more clearly specified by dividing it into constituent functions, the constituent functions should be specified. Section b.4 of this Software Requirements Specification provides a list of topics to be considered when specifying requirements regarding input the software item is required to accept and output it is required to produce. [J-STD-016:F.2.4(3.2)]
au. Performance and timing requirements. [SWE-109.b.8] Specify required behavior of the software item and include applicable parameters, such as response times, throughput times, other timing constraints, sequencing, accuracy, capacities (how much/how many), priorities, continuous operation requirements, and allowable deviations based on operating conditions. Include, as applicable, required behavior under unexpected, unallowed, or “out of bounds” conditions, requirements for error handling, and any provisions to be incorporated into the software item to provide continuity of operations in the event of emergencies.
[J-STD-016:F.2.4.(3.2.x)]
au. External interface requirements. [SWE-109.b.3]

au. Interface identification and diagrams. Fully identify the interfacing entities (systems, hardware items, software items, users, etc.) and interfaces to which this document applies. One or more interface diagrams may be included to graphically depict the interfaces. [J-STD-016:F.2.3(3.1)] Conventions needed to understand the diagrams should be presented or referenced. If the interface operates differently in different states or modes, each requirement or group of requirements for the interface should be correlated to the states and modes. [J-STD-016:F.2.3(3.3.1)]

au. Interface descriptions. For each interface define the following:

(1) Priority that the interfacing entity(ies) is required to assign the interface. [J-STD-016:F.2.3(3.x.a)]
(2) Requirements on the type of interface (such as real-time data transfer, storage and retrieval of data, etc.) to be implemented. [J-STD-016:F.2.3(3.x.b)]

(3) Required characteristics of individual data elements that the interfacing entity(ies) will provide, store, send, access, receive, etc. [J-STD-016:F.2.3(3.x.c)] Consider the following when defining the requirements for the data element:

a) Names/identifiers and description of content.

b) Data type (alphanumeric, integer, etc.).
c) Size and format (such as length, bit-level description of data interface, and punctuation of a character string).
d) Units of measurement (such as meters, nanoseconds).
e) Range or enumeration of possible values (such as 0-99).
f) Accuracy (how correct) and precision (number of significant digits).
g) Priority, timing, frequency, volume, sequencing, and other constraints, such as whether the data element may be updated.

h) Safety, security and privacy protection constraints.
i) Sources (setting/sending entities) and recipients (using/receiving entities). [J-STD-016:F.2.3(3.x.c)]

(4) Required characteristics of data element assemblies (records, messages, files, arrays, reports, etc.) that the interfacing entity(ies) will provide, store, send, access, receive, etc. [J-STD-016:F.2.3(3.x.d)] Consider the following when defining the requirements for the data element assembly:

a) Names/identifiers.
b) Data elements in the assembly and their structure (number, order, grouping).
c) Medium (such as compact disk) and structure of data elements/assemblies on the medium.
d) Visual and auditory characteristics of displays and other outputs (such as colors, layouts, fonts, icons and other display elements, beeps, lights).

e) Relationships among assemblies, such as sorting/access characteristics.
f) Priority, timing, frequency, volume, sequencing, and other constraints, such as whether the assembly may be updated.

g) Safety, security and privacy protection constraints.
h) Sources (setting/sending entities) and recipients (using/receiving entities). [J-STD-016:G.2.2(3.x.d.1-8)]
(5) Identify the communication methods (e.g., Ethernet, 1553 Bus, S-Band Radio) that the interfacing entity(ies) is required to use for the interface. [J-STD-016:G.2.2(3.x.e)] The project may find value in including the following items:

a) Communication links/bands/frequencies/media and their characteristics.
b) Message formatting.
c) Flow control (such as sequence numbering and buffer allocation).
d) Data transfer rate, whether periodic/aperiodic, and interval between transfers.
e) Routing, addressing, and naming conventions.
f) Transmission services, including priority and grade.
g) Safety/Security/privacy protection considerations, such as encryption, user authentication, compartmentalization, and auditing. [J-STD-016:G.2.2(3..x.e.1-8)]

(6) Required characteristics of protocols the interfacing entity(ies) will use for the interface (e.g., Transmission Control Protocol/ Internet Protocol (TCP/IP), User Datagram Protocol (UDP)).
[J-STD-016:F.2.3(3.x.f)] Include for each protocol:

a) Priority/layer of the protocol.
b) Packeting, including fragmentation and reassembly, routing, and addressing.
c) Legality checks, error control, and recovery procedures.
d) Synchronization, including connection establishment, maintenance, termination.
e) Status, identification, and any other reporting features. [J-STD-016:G.2.2(3.x.f.1-6)]
(7) Interface compatibility. This could be the identification of the transition mechanism/compatibility mode (e.g., hybrid dual Internet Protocol (IP) stack implementation to allow compatible communications between interfaces using IP Version 4 and IP version 6) or the identification of the subsets of functionality (to ensure compatibility between interfacing entities) in cases where both sides of the interface are using different versions of a standardized com method/protocol. Other specifications, such as physical compatibility of the interfacing entity(ies) (dimensions, tolerances, loads, voltages, plug compatibility, etc.), may be included. [J-STD-016:G.2.2(3.x.g)]
au. Internal interface requirements. [SWE-109.b.4] Specify the requirements, if any, imposed on interfaces internal to the software item. If such requirements are to be imposed, subsection b.4 of this Software Requirements Specification provides a list of topics to be considered.
au. Internal data requirements. [SWE-109.b.5] Specify the requirements, if any, imposed on data internal to the software item (e.g., databases and data files to be included in the software item). If such requirements are to be imposed, subsection b.4.b.3 and subsection b.4.b.4 of this Software Requirements Specification provide a list of topics to be considered.
au. *Adaptation requirements (data used to adapt a program to a given installation site or to give conditions in its operational environment). [SWE-109.b.6] Specify the requirements, if any, concerning installation-dependent data to be provided by the software item (such as site-dependent latitude and longitude) and parameters that the software item is required to use that may vary according to operational needs (such as operation-dependent targeting constants or site-dependent month-end dates). [J-STD-016:F.2.4(3.6)]
au. {Safety Critical} Safety requirements. [SWE-109.b.7] [SWE-102.g] Specify the software item requirements concerned with preventing or minimizing unintended hazards to personnel, property, and the physical environment. [NASA-STD-8719.13B:4.2.2] Examples include safeguards the software item is required to provide to prevent inadvertent actions (such as accidentally issuing an “auto pilot off” command) and nonactions (such as failure to issue an intended “auto pilot off” command).
au. Uniquely identify as safety critical the software safety requirements, both generic and specific, within this Software Requirements Specification. [SWE-102.g] [SWE-134.m] [NASA-STD-8719.13B:6.1.1.2]
au. Include the modes or states of operation under which software safety requirements are valid, and any modes or states in which they are not applicable. [SWE-102.g] [NASA-STD-8719.13B:6.1.1.4] (These requirements are also referred to as “must work” and “must not work” functions. For example, the safety-critical commands and checks that initiate a robotic arm movement must not work during system initiation or perhaps when in maintenance mode.)
au. Also, include any safety-related constraints between the hardware and software (i.e., when the software and hardware work together to perform a safety-critical function, their roles, precedence, and failure modes are documented and understood). [SWE-102.g] [NASA-STD-8719.13B:6.1.1.5]
au. Security and privacy protection requirements. [SWE-109.b.9] [SWE-102.g] Specify the software item requirements, if any, concerned with maintaining security and privacy protection. These requirements include, as applicable, the security/privacy protection environment in which the software item is required to operate, the type and degree of security or privacy protection to be provided, the security/privacy protection risks the software item is required to withstand, required safeguards to reduce those risks, the security/privacy protection policy that is required to be met, the security/privacy protection accountability the software item is required to provide, and the criteria that are required to be met for security/privacy protection certification/ accreditation. [J-STD-016:F.2.4(3.8)]
au. Environment requirements. [SWE-109.b.10] Specify the environment in which the software item is required to operate (e.g., computer hardware and operating system). [J-STD-016:F.2.4(3.9)]
au. Computer resource requirements. [SWE-109.b.11]
(b) Computer hardware resource requirements, including utilization requirements. [SWE-109.b.11.a] The computer hardware that is required to be used by the software item including, as applicable, number of each type of equipment, type, size, capacity, and other required characteristics of processors, memory, input/output devices, auxiliary storage, communications/network equipment, and other required equipment. Also include requirements, if any, on the software item’s computer hardware resource utilization, such as maximum allowable use of processor capacity, memory capacity, input/output device capacity, auxiliary storage device capacity, and communications/ network equipment capacity. [J-STD-016:F.2.4(3.10.1)] [J-STD-016:F.2.4(3.10.2)]
(c) Computer software requirements. [SWE-109.b.11.b] Computer software that is required to be used by, or incorporated into, the software item (e.g., operating systems, database management systems, communications/network software, utility software, input and equipment simulators, test software) and the correct version and documentation references of each such item. [J-STD-016:F.2.4(3.10.3)]
(d) Computer communications requirements. [SWE-109.b.11.c] For example, geographic locations to be linked; configuration and network topology; transmission techniques; data transfer rates; gateways; required system use times; type and volume of data to be transmitted/received; time boundaries for transmission/reception/response; peak volumes of data; and diagnostic features. [J-STD-016:F.2.4(3.10.4)]
au. Software quality characteristics. [SWE-109.b.12] For example, quantitative requirements regarding software item functionality (the ability to perform all required functions), reliability (the ability to perform with correct, consistent results), maintainability (the ability to be easily corrected), availability (the ability to be accessed and operated when needed), flexibility (the ability to be easily adapted to changing requirements), portability (the ability to be easily modified for a new environment), reusability (the ability to be used in multiple applications), testability (the ability to be easily and thoroughly tested), usability (the ability to be easily learned and used), and other attributes. [J-STD-016:F.2.4(3.11)]
au. Design and implementation constraints. [SWE-109.b.13] Requirements that constrain the design and construction of the systems, such as use of a particular software item architecture or requirements on the architecture, such as required databases, existing components; or use of government-furnished property (equipment, information, or software); use of particular design or implementation standards; use of particular data standards; use of a particular programming language; flexibility and expandability that are required to be provided to support anticipated areas of growth or changes in technology, or mission. [J-STD-016:F.2.4(3.12)]
au. Personnel-related requirements. [SWE-109.b.14] Specify the software item requirements, if any, to accommodate the number, skill levels, duty cycles, training needs, or other information about the personnel who will use or maintain the software item. Examples include requirements for number of simultaneous users; specific requirements for each user type, such as administrator and operator; and human factors engineering requirements. Include, as applicable, considerations for the capabilities and limitations of humans; foreseeable human errors under both normal and extreme conditions; and specific areas where the effects of human error would be particularly serious. Include requirements for color and duration of error messages, physical placement of critical indicators, and use of auditory signals. [J-STD-016:F.2.4(3.13)]
au. Training-related requirements. [SWE-109.b.15] For example: built-in help or tutorials.
au. Logistics-related requirements. [SWE-109.b.16] For example: system maintenance, software maintenance, supply-system requirements, impact on existing facilities or equipment. [J-STD-016:F.2.4(3.10.1)]
au. Packaging requirements. [SWE-109.b.17] For example: storage limitations on deliverable (on one compact disk), encryption, cyclic redundancy check on the deliverable, or digital signature.
au. Precedence and criticality of requirements. [SWE-109.b.18] [SWE-102.g] Specify the order of precedence, criticality, or assigned weights indicating the relative importance of the requirements in this specification. Examples include identifying those requirements deemed critical to safety, to security or to privacy protection for purposes of singling them out for special treatment. [J-STD-016:F.2.4(3.18)]
av. Verification methods (e.g., demonstration, test, analysis, inspection). [SWE-109.c] Specify for each requirement in Section b (above) the verification method(s)
 to be used to ensure that the requirement has been met. A table may be used to present this information, or each requirement in Section b may be annotated with the method(s) to be used. [J-STD-016:F.2.4(4)]
aw. Bidirectional traceability between the software requirement and the higher level requirement. [SWE-109.d] [SWE-052] (If there are no higher level requirements, then this section of the Software Requirements Specification can be omitted.)
aw. Traceability from each software item requirement in this specification to the system (or subsystem) requirements it addresses. [SWE-052]
(a) Alternatively, this traceability may be provided by annotating each requirement in section b above.
(b) Each level of system refinement may result in requirements not directly traceable to higher-level requirements. For example, a system architectural design that creates multiple software items may result in requirements about how the software items will interface, even though these interfaces are not covered in system requirements. Such requirements may be traced to a general requirement such as “system implementation” or to the system design decisions that resulted in their generation. [J-STD-016:F.2.4(5.a)]
aw. Traceability from each system (or subsystem) requirement allocated to this software item to the software item requirements that address it. All system (subsystem) requirements allocated to this software item should be accounted for. [SWE-052] [J-STD-016:F.2.4(5.b)]
ax. Requirements partitioning for phased delivery. [SWE-109.e]
ay. *Testing requirements that drive software design decisions [SWE-109.f] (e.g., special system-level timing requirements/checkpoint restart, the ability to see and modify variable values, monitoring execution time or bandwidth, the ability to inject defects).
az. Supporting requirements rationale. [SWE-109.g] A table may be used to present this information, or each requirement in Section b above may be annotated with the rationale for the requirement.
Appendix A6: Software Data Dictionary
The Software Data Dictionary is required only for space-flight software and the ground software that controls or monitors the space-flight system. [LaRC-2012-001 Waiver] For safety-critical Class C through E software, the project may consider developing a Software Data Dictionary with the applicable sections described below.
Space-flight software and the ground software that controls or monitors the space-flight system shall document a Software Data Dictionary that includes the following: [SWE-110] [LaRC-2012-001 Waiver]
ba. Channelization data (e.g., bus mapping, vehicle wiring mapping, hardware channelization). [SWE-110.a]
bb. Input/Output variables. [SWE-110.b]
bc. Rate group data. [SWE-110.c] For example, how fast the cruise control data are sampled/monitored, or the different rates at which different sets of sensors are sampled.
bd. Raw and calibrated sensor data. [SWE-110.d]
be. Telemetry format/layout and data. [SWE-110.e]
bf. Data recorder format/layout and data. [SWE-110.f]
bg. Command definition (e.g., onboard, ground, test specific). [SWE-110.g]
bh. Effector command information. [SWE-110.h] Examples of effectors are actuators such as fly wheels or gimbals, or reaction control system jets.
bi. Operational limits (e.g., maximum/minimum values, launch commit criteria information). [SWE-110.i]
bj. {Safety-Critical} Uniquely identify as safety-critical the software safety elements within this Software Data Dictionary. [SWE-134.m]
Note: If part or all of the above information is documented elsewhere (e.g., the Software Requirements Specification, Interface Design Description, the software item detailed design, standards for protocols, or standards for user interfaces), it may be referenced instead of restating the information here.
Appendix A7: Software Design Description
Instructions: In the sections below, a software item is decomposed into software units; software units may occur at different levels of a design hierarchy and may consist of other software units. Therefore, a project may develop a hierarchal software design consisting of multiple levels by recursively using the sections below.

Definitions:

Software item: An aggregation of software, such as a computer program or database, that satisfies an end use function and is designated for purposes of specification, qualification testing, interfacing, configuration management, or other purposes. Software items are selected based on trade-offs among software function, size, host or target computers, developer, support strategy, plans for reuse, criticality, interface considerations, need to be separately documented and controlled, and other factors. A software item is made up of one or more software units. [J-STD-016:3.1.37]
Software unit: An element in the design of a software item; for example, a major subdivision of a software item, a component of that subdivision, a class, object, module, function, routine, or database. Software units may occur at different levels of a hierarchy and may consist of other software units. Software units in the design may or may not have a one-to-one relationship with the code and data entities (routines, procedures, databases, data files, etc.) that implement them or with the computer files containing those entities. [J-STD-016:3.1.43] A database may be treated as a software item or as a software unit. [J-STD-016:G.2.4(4.1.a)]
The Software Design Description describes the design of a software item and shall include: [SWE-111] [SWE-056]
bk. Software item design decisions. [SWE-111.a]
bk. Decisions about the software item’s behavioral design (how it will behave, from a user’s point of view, in meeting its requirements, ignoring internal implementation) and other decisions and results of trades
[SWE-111.a] affecting the selection and design of the software units that make up the software item. [J-STD-016:G.2.4(3)] Examples of software item-wide design decisions are the following: [J-STD-016:G.2.4(3)]
bk. Design decisions regarding input the software item will accept and output it will produce, including interfaces with other systems, hardware items, software items, and users. Appendix A8, Interface Design Description, identifies topics to be considered in this description. [J-STD-016:G.2.4(3.a)]
bk. Design decisions on software item behavior in response to each input or condition, including actions the software item will perform, response times and other performance characteristics, description of physical systems modeled, selected equations/algorithms/rules, and handling of unallowed inputs or conditions. [J-STD-016:G.2.4(3.b)]
bk. Design decisions on how databases/data files will appear to the user. [J-STD-016:G.2.4(3.c)]
bk. Selected approach to meeting safety, security and privacy protection requirements. [J-STD-016:G.2.4(3.d)]
bk. Design decisions made in response to requirements, [J-STD-016:G.2.4(3.e)] such as quality characteristics (e.g., performance, availability, maintainability, modifiability, safety, security, testability and usability (operability)). [SWE-111 Note]
bk. Documentation of the rationale for software item design decisions/trade decisions, including assumptions, limitations, safety and reliability related items/concerns or constraints in design documentation. [SWE-111.c.2]
bk. *Design conventions needed to understand the design. [J-STD-016:G.2.4(4)] If part or all of the design depends upon system states or modes, this dependency should be indicated.
bl. Software item architectural design. [SWE-057] [SWE-111.b] [SWE-111.c.1.a] [J-STD-016:G.2.4(4)] The architecture of a software item is the structure or structures of the software item that consist of software units, the properties of those units, and the relationships between them. Documenting software architecture facilitates communication between stakeholders, documents early decisions about high-level design, and allows reuse of design units and patterns between projects. [NPR 7150.2A:3.2.2 modified]

bl. Software item decomposition; including data structures. [SWE-058] [SWE-111.c] [SWE-111.c.1.a] Identify the software units that make up the software item. See definition of software units above.
bl. Static interrelationship of software units. [SWE-111.c] [SWE-111.c.1.c] Show the static (such as “consists of”) relationship(s) of the software units. Multiple relationships may be presented, depending on the selected software design methodology (for example, in an object-oriented design, this section may present the class and object structures as well as the module and process architectures of the software item). [J-STD-016:G.2.4(4.1.b)]

bl. The purpose of each software unit. Also consider including the software item-wide design decisions allocated to the software units. [J-STD-016:G.2.4(4.1.c)]
bl. The software item requirements allocated to each software unit. [SWE-059] [SWE-111.c.1.a] (Alternatively, the allocation of requirements may be provided in section d.1 below.) [J-STD-016:G.2.4(4.1.c)]
bl. *Which software units are commercial-off-the-shelf (COTS), government-off-the-shelf (GOTS), modified-off-the-shelf (MOTS), reused, or open source software, and software to be developed for reuse, if any. [SWE-027] The purpose of this item is to identify the software units to which Appendix 1. Software Management Plan, item q. Off-the-shelf (OTS) software applies. Additionally, software units identified for future reuse should have a software classification based on present and intended future use. [NPR 7150.2A:2.2.8 Note modified] [SWE-021 modified] For pre-existing designs or software, the description should provide identifying information, such as name, version, documentation references, library, etc. [J-STD-016:G.2.4(4.1.d)]

bl. Computer hardware resources. [SWE-111.c.1.f] If the project has hardware resource constraints (such as processor capacity, memory capacity, input/output device capacity, auxiliary storage capacity, and communications/network equipment capacity), describe the software item’s (and as applicable, each software unit’s) planned utilization of computer hardware resources. [J-STD-016:G.2.4(4.1.e)] Include for each computer hardware resource: [J-STD-016:G.2.4(4.1.e)]
bl. The software item requirements or system-level resource allocations being satisfied. [J-STD-016:G.2.4(4.1.e.1)]
bl. The assumptions and conditions on which the utilization data are based (for example, typical usage, worst-case usage, assumption of certain events). [J-STD-016:G.2.4(4.1.e.2)]
bl. Any special considerations affecting the utilization (such as use of virtual memory, overlays, or multiprocessors or the impacts of operating system overhead, library software, or other implementation overhead). [J-STD-016:G.2.4(4.1.e.3)]
bl. The units of measure used (such as percentage of processor capacity, cycles per second, bytes of memory, kilobytes per second). [J-STD-016:G.2.4(4.1.e.4)]
bl. The level(s) at which the estimates or measures will be made (such as software unit, software item, or executable program). [J-STD-016:G.2.4(4.1.e.5)]

bl. Dynamic interrelationship of software units (concept of execution). Describe the concept of execution among the software units including data flow, control flow, and timing. [SWE-111.c.1.d] [J-STD-016:G.2.4(4.2)] Include diagrams and descriptions showing the dynamic relationship of the software units, that is, how they will interact during software item operation, including, as applicable, flow of execution control, data flow, dynamically controlled sequencing, state transition diagrams, timing diagrams, priorities among software units, handling of interrupts, timing/ sequencing relationships, exception handling, concurrent execution, dynamic allocation/de-allocation, dynamic creation/deletion of objects, processes, tasks, and other aspects of dynamic behavior. [J-STD-016:G.2.4(4.2)]

bl. Interface design. [SWE-111.c.3] Describe the interface characteristics of the software units. Include both interfaces among the software units and their interfaces with external entities such as systems, hardware items, software items, and users. If part or all of this information is contained in Appendix A8, Interface Design Descriptions, or elsewhere, these sources may be referenced. [J-STD-016:G.2.2(3)]
bl. {Safety-Critical} Address the safety aspects of the design.

bl. Identify safety design features and methods (e.g., inhibits, failure detection and recovery, interlocks, assertions, and partitions) that will be used to implement the software safety requirements. [NASA-STD-8719.13B:6.2.1.1]
bl. Uniquely identify as safety critical all safety-critical design elements, i.e., elements that implement safety-critical requirements or can potentially affect the safety-critical elements through failure or other mechanisms. [SWE-134.m] [NASA-STD-8719.13B:6.2.1.3, 6.2.1.3.1]
bm. Document the software item detailed design. [SWE-058] [SWE-111] Provide the detailed description for each software unit of the software item. [J-STD-016:G.2.4(5)] For each software unit define the following:
bm. Unit design decisions, if any, such as algorithms to be used, if not previously selected. [SWE-111.c.1.a]
[J-STD-016:G.2.4(5.x.a)]

bm. Any constraints, limitations, or unusual features in the design of the software unit. [SWE-111.c.2] [J-STD-016:G.2.4(5.x.b)]

bm. If the software unit contains, receives, or outputs data, a description of its inputs, outputs, and other data elements and data element assemblies, as applicable. [SWE-111.c.1.b] Appendix A8, Interface Design Description, provides a list of topics to be covered, as applicable. Interface specifications of software units may be described here, or in Appendix A8, Interface Design Descriptions. [J-STD-016:G.2.4(5)] Data local to the software unit may be described separately from data input to or output from the software unit. [J-STD-016:G.2.4(5.x.e)]
bm. Initial conditions for the software unit.
bm. Sequence of operations. [SWE-111.c.1.d] [J-STD-016:G.2.4(5.x.f.4)]
bm. Response (and if applicable response time) to each input. [SWE-111.c.1.d] [J-STD-016:G.2.4(5.x.f.3)]
bm. Exception and error handling. [J-STD-016:G.2.4(5.x.f.5)]

bm. Consider including the following:
bm. Conditions under which control is passed to other software units. [J-STD-016:G.2.4(5.x.f.2)]
bm. The method for sequence control; and the logic and input conditions of that method, such as timing variations, priority assignments. [J-STD-016:G.2.4(5.x.f.4.a)] [J-STD-016:G.2.4(5.x.f.4.b)]
bm. Data transfer in and out of memory. [J-STD-016:G.2.4(5.x.f.4.c)]
bm. The sensing of discrete input signals, and timing relationships between interrupt operations within the software unit. [J-STD-016:G.2.4(5.x.f.4.d)]
bn. Document the requirements traceability. [SWE-059] [SWE-111.c.1.e]
bn. Traceability from each software unit identified in this Software Design Description to the software item requirements allocated to it. (Alternatively, this traceability may be provided in b.4 above.) [SWE-059] [SWE-111.c.1.e] Each level of software item refinement may result in requirements not directly traceable to higher-level requirements. For example, a software architectural design that creates two software units may result in requirements about how the software units will interface, even though these interfaces are not covered in software item requirements. Such requirements may be traced to a general requirement such as “software item” or to the software design decisions that resulted in their generation. [J-STD-016:G.2.4(6.a)]
bn. Traceability from each software item requirement to the software units to which it is allocated. [SWE-059] [SWE-111.c.1.e] [J-STD-016:G.2.4(6.b)]
bo. Code traceability. [SWE-064] [SWE-111.c.1.e]
bo. Traceability from each software unit identified in this Software Design Description to the code. [SWE-111.c.1.e] [SWE-064]
Guidance: Code can be the human-written text or model that is subsequently translated through a series of tools (e.g. code generators, compilers, loaders) into machine or byte code.

bo. Traceability from code to each software unit identified in this Software Design Description. [SWE-111.c.1.e] [SWE-064]
Appendix A8: Interface Design Description
Instructions: In the sections below, describe the interface characteristics of one or more systems, subsystems, hardware items, software items, manual operations, or other system components. [J-STD-016:G.2.2(3)] Therefore, a project may develop an Interface Design Description for multiple different interfaces.

If part or all of this information is documented elsewhere (such as data dictionaries, standards for protocols, and standards for user interfaces) it may be referenced instead of restating the information here. [J-STD-016:G.2.2(3.x.a)]
The Interface Design Description shall include: [SWE-112]
bp. Interface identification and diagrams. Fully identify the interfacing entities (systems, hardware items, software items, users, etc.) and interfaces to which this document applies. [SWE-058] One or more interface diagrams may be included to graphically depict the interfaces. [J-STD-016:G.2.2(3.1)] Design conventions needed to understand the design should be presented or referenced. If part or all of the design depends upon system states or modes, this dependency should be indicated. [J-STD-016:G.2.2(3)]
bq. Interface descriptions. For each interface define the following: [SWE-058]
bq. Priority assigned to the interface by the interfacing entity(ies). [SWE-112.a] [J-STD-016:G.2.2(3.x.a)]
bq. Type of interface (such as real-time data transfer, storage and retrieval of data, etc.) to be implemented. [SWE-112.b] [J-STD-016:G.2.2(3.x.b)]
bq. Specifications of individual data elements that the interfacing entity(ies) will provide, store, send, access, receive. [SWE-112.c] [J-STD-016:G.2.2(3.x.c)] Include for each data element:
bq. Names/identifiers and description of content. [SWE-112.c]
bq. Data type (alphanumeric, integer, etc.).
bq. Size and format [SWE-112.c] (such as length, bit-level description of data interface [SWE-112.c], and punctuation of a character string).
bq. Units of measurement (such as meters, dollars, nanoseconds).
bq. Range or enumeration of possible values (such as 0-99).
bq. Accuracy (how correct) and precision (number of significant digits).
bq. Priority, timing, frequency, volume, sequencing, and other constraints, such as whether the data element may be updated.
bq. Safety, security and privacy protection constraints.
bq. Sources (setting/sending entities) and recipients (using/receiving entities). [J-STD-016:G.2.2(3.x.c.1-9)]
bq. Specifications of individual data element assemblies (records, messages, files, arrays, reports, etc.) that the interfacing entity(ies) will provide, store, send, access, receive, etc. [SWE-112.d] [J-STD-016:G.2.2(3.x.d)] Include for each data element assembly:
bq. Names/identifiers.
bq. Data elements in the assembly and their structure (number, order, grouping).
bq. Medium (such as compact disk) and structure of data elements/assemblies on the medium.
bq. Relationships among assemblies, such as sorting/access characteristics.
bq. Priority, timing, frequency, volume, sequencing, and other constraints, such as whether the assembly may be updated.
bq. Safety, security and privacy protection constraints.
bq. Sources (setting/sending entities) and recipients (using/receiving entities). [J-STD-016:G.2.2(3.x.d.1-8)]
bq. Identification of communication methods (e.g., Ethernet, 1553 Bus, S-Band Radio) that the interfacing entity(ies) will use for the interface. [SWE-112.e] [J-STD-016:G.2.2(3.x.e)] The project may find value in including the following items:
bq. Communication links/bands/frequencies/media and their characteristics.
bq. Message formatting.
bq. Flow control (such as sequence numbering and buffer allocation).
bq. Data transfer rate, whether periodic/aperiodic, and interval between transfers.
bq. Routing, addressing, and naming conventions.
bq. Transmission services, including priority and grade.
bq. Safety/Security/privacy protection considerations, such as encryption, user authentication, compartmentalization, and auditing. [J-STD-016:G.2.2(3.x.e.1-8)]
bq. *Specification of protocols (e.g., Transmission Control Protocol/ Internet Protocol (TCP/IP), User Datagram Protocol (UDP)) the interfacing entity(ies) will use for the interface. [SWE-112.f] [J-STD-016:G.2.2(3.x.f)] Include for each protocol:
bq. Priority/layer of the protocol.
bq. Packeting, including fragmentation and reassembly, routing, and addressing.
bq. Legality checks, error control, and recovery procedures.
bq. Synchronization, including connection establishment, maintenance, termination.
bq. Status, identification, and any other reporting features. [J-STD-016:G.2.2(3.x.f.1-6)]
bq. Other specifications, such as physical compatibility of the interfacing entity(ies) (dimensions, tolerances, loads, voltages, plug compatibility, etc.). [SWE-112.g] [J-STD-016:G.2.2(3.x.g)]
bq. *Interface compatibility. [SWE-112.i] This could be the identification of the transition mechanism/compatibility mode (e.g. hybrid dual Internet Protocol (IP) stack implementation to allow compatible communications between interfaces using IP Version 4 and IP version 6) or the identification of the subsets of functionality (to ensure compatibility between interfacing entities) in cases where both sides of the interface are using different versions of a standardized communication method/protocol.
bq. {Safety-Critical} Safety-related interface specifications and design features. [SWE-112.j]
(a) Identify safety design features and methods that will be used to implement the software safety requirements. [NASA-STD-8719.13B:6.2.1.1]
(b) Uniquely identify as safety critical all safety-critical interface elements, i.e. elements that implement safety-critical requirements or can potentially affect the safety-critical elements through failure or other mechanisms. [SWE-134.m] [NASA-STD-8719.13B:6.2.1.3, 6.2.1.3.1]
br. Document the requirements traceability. [SWE-059] [SWE-112.h] [J-STD-016:G.2.2(4)]
br. Traceability from each interfacing entity covered by this Interface Design Description to the system or software item requirements addressed by the entity’s interface design. [SWE-059] [SWE-112.h] [J-STD-016:G.2.2(4.a)] Each level of system or software item refinement may result in requirements not directly traceable to higher-level requirements. For example, a system or software architectural design that creates two subsystems or two software units may result in requirements about how the subsystems or software units will interface, even though these interfaces are not covered in system or software item requirements. Such requirements may be traced to a general requirement such as “system implementation” or “software item” or to the system or software design decisions (e.g., in the Software Design Decision) that resulted in their generation.
[J-STD-016:G.2.2(4.a)]
br. Traceability from each system or software item requirement that affects an interface covered in this Interface Design Description to the interfacing entities that address it. [SWE-059] [SWE-112.h] [J-STD-016:G.2.2(4.b)]
Appendix A9: Software Change Request
Instructions: Projects can combine the Software Change Request and the Problem Report content into one document.

The Software Change Request shall include: [SWE-113]
bs. Identification of the software item. [SWE-113.a]
bt. Description of change requested and rationale. [SWE-113.b]
bu. Priority. [SWE-113c] The project can define priority using a scale (e.g., 1 through 5, low/normal/high), requested completion date, assignment to a planned release, or other indication.
bv. Originator of Software Change Request. [SWE-113.c]
bw. Date change request submitted. [SWE-113.h]

bx. Life-cycle phase in which change was requested. [SWE-113.e]
by. Analysis of the proposed change including a description of the proposed implementation, the configuration items (i.e., software units and documentation) that will require change, the impact of the proposed implementation to cost and schedule, and, for safety-critical software, any safety aspect/considerations/impacts of the proposed change. [SWE-113.b] [SWE-113.d] [SWE-113.j] Changes should undergo analysis for correctness, consistency, clarity, completeness, traceability, feasibility, verifiability, and maintainability.
bz. Status of change request: to include approval/ disapproval and closure of the change request. [SWE-113.i] [SWE-113.f] Additional status categories that may be included are: submitted, reviewed, implemented, and verified.
ca. Description of the action taken to implement the change. [SWE-113.d]
cb. Verification of the implementation. [SWE-113.g]
cc. Release information for modified configuration items (e.g., version identifiers). [SWE-113.g]
Appendix A10: Software Problem Report
Instructions: Projects can combine the Software Change Request and the Problem Report content into one document.

The Software Problem Report shall include: [SWE-113]
cd. Identification of the software item. [SWE-113.a]
ce. Description of the problem and the configuration of system and software when problem was identified
(e.g., system/software configuration identifier or list of components and their versions). [SWE-113.b] [SWE-113.k] The description should capture necessary information to reproduce the problem including version identification of system components (hardware configuration, operating system, etc.) when the problem occurred. Suggested solutions or workarounds should be solicited from the originator.
cf. Originator of Software Problem Report. [SWE-113.c]
cg. Severity. [SWE-113.c]
ch. Life-cycle phase in which problem was discovered. [SWE-113.e]
ci. Date problem report discovered. [SWE-113.h]
cj. Analysis of problem including an identification of the root cause, available workarounds, a description of the proposed solution, the configuration items (i.e., software units and documentation such as Software Design Description and Software Test Procedure) that will require modification, the impact of the proposed solution to cost and schedule, and, for safety-critical software, any safety aspect/considerations/impacts of the problem, proposed corrective action, or workaround. [SWE-113.d] [SWE-113.b] [SWE-113.j] [SWE-113.l]
ck. Status of problem report to include approval or disapproval of the problem report and closure of the problem report. [SWE-113.i] [SWE-113.f] Additional status categories that may be included are: submitted, reviewed, implemented, and verified.
cl. Description of the corrective action taken to resolve the problem. [SWE-113.d]
cm. Verification of the implementation. [SWE-113.g]
cn. Release information for modified configuration items (e.g. version identifiers). [SWE-113.g]
co. {Safety-Critical} Trace from the safety-critical software problem back to the system-level hazard involved.
[NASA-STD-8719.13B:5.8.1.1]
Appendix A11: Software Test Procedures
The Software Test Procedures shall include: [SWE-114]

cp. Test preparations, including hardware and software. [SWE-114.a] This section should be divided into the following subsections. Safety, security and privacy protection considerations should be included as applicable.
cp. Project-unique identifier of a test. This section should identify a test by project-unique identifier, provide a brief description, and should be divided into the following. When the information required duplicates information previously specified for another test, that information may be referenced rather than repeated.
cp. Hardware preparation. Describe the procedures necessary to prepare the hardware for the test. Reference may be made to published operating manuals for these procedures. The following should be provided, as applicable:

cp. The specific hardware to be used, identified by name and, if applicable, number.
cp. Any switch settings and cabling necessary to connect the hardware.
cp. One or more diagrams to show hardware, interconnecting control, and data paths.
cp. Step-by-step instructions for placing the hardware in a state of readiness.
cp. Software preparation. Describe the procedures necessary to prepare the item(s) under test and any related software, including data, for the test. Reference may be made to published software manuals for these procedures. The following information should be provided, as applicable:

(1) The specific software to be used in the test.
cp. The storage medium of the item(s) under test (e.g., compact disk).
cp. The storage medium of any related software (e.g., simulators, test drivers, databases).
cp. Instructions for loading the software, including required sequence.
cp. Instructions for software initialization common to more than one test case.
cp. Other pretest preparations. Describe any other pre-test personnel actions, preparations, or procedures necessary to perform the test. [J-STD-016:H.2.1(3)]
cq. Test descriptions, including: [SWE-114.b] This section should be divided into the following subsections. Safety, security and privacy protection considerations should be included as applicable. [J-STD-016:H.2.1(4)]
cq. Test identifier. [SWE-114.b.1] (Project-unique identifier of a test). This section should identify a test by project-unique identifier and should be divided into the following subsections for each test case. The word “test” means a collection of related test cases. When the required information duplicates information previously provided, that information may be referenced rather than repeated. [J-STD-016:H.2.1(4.x)]
cq. (Project-unique identifier of a test case).This section should identify a test case by project-unique identifier, state its purpose, and provide a brief description. The following subsections should provide a detailed description of the test case. [J-STD-016:H.2.1(4.x.y)]
cq. System or software item requirements addressed by the test case. [SWE-114.b.2] Identify the software item or system requirements addressed by the test case. (Alternatively, this information may be provided in section c.1 below, Requirements traceability.) [J-STD-016:H.2.1(4.x.y.1)]
cq. *Prerequisite conditions, including identification of test configuration. [SWE-114.b.3] [SWE-114.d] Identify any prerequisite conditions that are required to be established prior to performing the test case, such as:
cq. Hardware and software configuration.

cq. Flags, initial breakpoints, pointers, control parameters, or initial data to be set/reset prior to test commencement.
cq. Preset hardware conditions or electrical states necessary to run the test case.
cq. Initial conditions to be used in making timing measurements.
cq. Conditioning of the simulated environment.
cq. Other special conditions peculiar to the test case. [J-STD-016:H.2.1(4.x.y.2)]
cq. Test input. [SWE-114.b.4] Describe the test input necessary for the test case, such as:
cq. Name, purpose, and description (e.g., range of values, accuracy) of each test input.
cq. Source of the test input and the method to be used for selecting the test input.
cq. Whether the test input is real or simulated.
cq. Time or event sequence of test input.
cq. The manner in which the input data will be controlled to:

cq. Test the item(s) with a minimum/reasonable number of data types and values.
cq. Exercise the item(s) with a range of valid data types and values that test for overload, saturation, and other “worst case” effects.
cq. Exercise the item(s) with invalid data types and values to test for appropriate handling of irregular inputs.
cq. Permit retesting, if necessary. [J-STD-016:H.2.1(4.x.y.3)]
cq. Expected test results, including assumptions and constraints. [SWE-114.b.6] Identify all expected test results for the test case. Both intermediate and final test results should be provided, as applicable. [J-STD-016:H.2.1(4.x.y.4)]
cq. Criteria for evaluating results. [SWE-114.b.7] Identify the criteria to be used for evaluating the intermediate and final results of the test case. For each test result, the following information should be provided, as applicable:
cq. The range or accuracy over which an output can vary and still be acceptable.
cq. Minimum number of combinations or alternatives of input and output conditions that constitute an acceptable test result.
cq. Maximum/minimum allowable test duration, in terms of time or number of events.
cq. Maximum number of interrupts, halts, or other system breaks that may occur.
cq. Allowable severity of processing errors.
cq. Conditions under which the result is inconclusive and retesting is to be performed.
cq. Conditions under which the output is to be interpreted as indicating irregularities in input test data, in the test database/data files or in test procedures.
cq. Allowable indications of the control, status, and results of the test and the readiness for the next test case (may be output of auxiliary test software).
cq. Additional criteria not mentioned above. [J-STD-016:H.2.1(4.x.y.5)]
cq. Instructions for conducting procedure. [SWE-114.b.5] Define the test procedure for the test case. The test procedure should be defined as a series of individually numbered steps listed sequentially in the order in which the steps are to be performed. The appropriate level of detail in each test procedure depends on the type of software being tested. For some software, each keystroke may be a separate test procedure step; for most software, each step may include a logically related series of keystrokes or other actions. The appropriate level of detail is the level at which it is useful to specify expected results and compare them with actual results. The following should be provided for each test procedure, as applicable:
cq. Test operator actions and equipment operation required for each step, including commands, as applicable, to:

cq. Initiate the test case and apply test input.
cq. Inspect test conditions.
cq. Perform interim evaluations of test results.
cq. Record data.
cq. Halt or interrupt the test case.
cq. Request data dumps or other aids, if needed.
cq. Modify the database/data files.
cq. Repeat the test case if unsuccessful.
cq. Apply alternate modes as required by the test case.
cq. Terminate the test case.
cq. Expected result and evaluation criteria for each step.
cq. If the test case addresses multiple requirements, identification of which test procedure step(s) address which requirements. (Alternatively, this information may be provided in section c. below, Requirements traceability.)

cq. Actions to follow in the event of a program stop or indicated error, such as:

cq. Recording of critical data from indicators for reference purposes.
cq. Halting or pausing time-sensitive test-support software and test apparatus.
cq. Collection of system and operator records of test results.
cq. Procedures to be used to reduce and analyze test results to accomplish the following, as applicable:

cq. Detect whether an output has been produced.
cq. Identify media and location of data produced by the test case.
cq. Evaluate output as a basis for continuation of test sequence.
cq. Evaluate test output against required output. [J-STD-016:H.2.1(4.x.y.6)]
cr. Requirements traceability. [SWE-072] [SWE-114.c] This section should contain:
cr. Traceability from each test case to the system or software item requirements it addresses. If a test case addresses multiple requirements, traceability from each set of test procedure steps to the requirements addressed. [SWE-072] [SWE-114.c] (Alternatively, this traceability may be provided in section b.1.a.1 above, System or software requirements addressed by the test case.)

cr. Traceability from each system or software item requirement covered by the test case(s) that address it. For software item testing, traceability from each software item requirement in the software item’s Software Requirements Specification and associated Interface Design Description. For system testing, traceability from each system requirement in the system’s specification and associated interface requirements. If a test case addresses multiple requirements, the traceability should indicate the particular test procedure steps that address each requirement. [SWE-114.c] [SWE-072] [J-STD-016:H.2.1(5)]
Appendix A12: Software Version Description
The Software Version Description shall include: [SWE-116] [SWE-063]
cs. Name of software configuration item and its version (e.g., Software X –Version 9.2, Software X-MM/DD/YY, Software X- Release 2). If there are multiple systems within the target environment(s) or the software configuration item is customized for a particular hardware configuration, determine if the system identification also needs to be included. [SWE-116.a] [SWE-116.d]
ct. Summary of updates/changes since the previous Software Version Description, including a list of change requests and problem reports newly implemented in this version, a list of change requests and problem reports that remain open, and any workarounds. [SWE-116.d] [SWE-116.h] [SWE-116.i]
cu. Instructions for building the executable software, including, for example, the instructions and data for compiling and linking and the procedures used for software recovery, software regeneration, testing, or modification.
[SWE-116.e]
cv. Software product files (any files needed to install, build, operate, and maintain the software). [SWE-116.g] Software product files are the set of computer programs, procedures, and associated documentation and data. Examples include requirements, design, source code, object code, databases, test information, batch files, command files, data files, user manuals, and any files needed to install, build, operate, and maintain the software.
cw. Executable software (e.g., batch files, command files, data files, or other software needed to install the software on its target computer). [SWE-116.b]
cx. Software life-cycle data that define the software product. [SWE-116.c]

cy. Data integrity checks for the executable object code and source code. [SWE-116.f]
Appendix A13: Software Test Report
Software Test Report shall include: [SWE-118]
cz. Overview of the test results [SWE-118.a] (e.g., document whether the set of tests Passed or Failed). This section could be divided into the following subsections to provide an overview of test results. [J-STD-016:H.2.2(3)]
cz. Overall evaluation of the software as shown by the test results. [SWE-118.a.1] Provide an overall assessment of the software as demonstrated by the test results in this report. [J-STD-016:H.2.2(3.1.a)]
cz. Impact of test environment. [SWE-118.a.3] Provide an assessment of the manner in which the test environment may be different from the operational environment and the effect of this difference on the test results. [J-STD-016:H.2.2(3.2)]

cz. Recommended improvements. Provide any recommended improvements in the design, operation, or testing of the software tested. A discussion of each recommendation and its impact on the software may be provided. [J-STD-016:H.2.2(3.3)]
da. Detailed test results. [SWE-118.b] This section should be divided into the following subsections to describe the detailed results for each test. Note: The word “test” means a related collection of test cases. [J-STD-016:H.2.2(4)]
da. Project-unique identifier of a test. [SWE-118.b.1] This section should identify a test by project-unique identifier and should be divided into the following subsections. [J-STD-016:H.2.2(4.x)]
(a) Summary of test results (e.g., including requirements verified). [SWE-118.b.2] This section contains the evaluation of the test results against the Software Test Procedure criteria and documents the evaluation. [SWE-068] [SWE-118.b.1] The summary of test results should include, possibly in a table, the completion status of each test case associated with the test (for example, “all results as expected,” “problems encountered,” “deviations required”). When the completion status is not “as expected,” this section should reference the following subsection for details. [J-STD-016:H.2.2(4.x.1)]

(b) Problems encountered. [SWE-118.b.3] This section should be divided into subsections that identify each test case in which one or more problems occurred. [J-STD-016:H.2.2(4.x.2)]
(1) Project-unique identifier of a test case. This section should identify by project-unique identifier a test case in which one or more problems occurred, and should provide:

a) A description of the problem(s) that occurred, including the remaining deficiencies, limitations, or constraints detected by testing [SWE-118.a.2] [SWE-118.b.3] (e.g., including description of the impact on software and system performance, the impact a correction would have on software and system design, and recommendations for correcting the deficiency, limitation, or constraint), and identification of requirements not met. [SWE-118.a.2] [J-STD-016:H.2.2(3.1.c.1)]
b) Identification of the test procedure step(s) in which they occurred.

c) Software Problem Report/Software Change Requests may be used to provide deficiency information. [J-STD-016:H.2.2(3.1.b)] Reference(s) to the associated problem/change report(s) and backup data, as applicable.

d) The number of times the procedure or step was repeated in attempting to correct the problem(s) and the outcome of each attempt.

e) Back-up points or test steps where tests were resumed for retesting. [J-STD-016:H.2.2(4.x.2.y)]

(c) Deviations from test cases/procedures. [SWE-118.b.4] This section should be divided into subsections that identify each test case in which deviations from test case/test procedures occurred.
(1) Project-unique identifier of a test case. This section should identify by project-unique identifier a test case in which one or more deviations occurred, and should provide:

a) A description of the deviation(s) (for example, test case run in which the deviation occurred and nature of the deviation, such as substitution of required equipment, procedural steps not followed, schedule deviations). Red-lined test procedures may be used to show the deviations.

b) The rationale for the deviation(s).
c) An assessment of the deviations’ impact on the validity of the test case. [J-STD-016:H.2.2(4.x.3)]

db. Test log. [SWE-118.c] Present, possibly in a figure or annex, a chronological record of the test events covered by this report. This test log should include: [J-STD-016:H.2.2(5)]

db. Date(s), time(s), and location(s) of tests performed. [SWE-118.c.1]
db. Test environment, hardware, and software configurations used for each test. [SWE-118.c.2] Including, as applicable, part/model/serial number, manufacturer, revision level, and calibration date of all hardware, and version number and name for the software components used. [J-STD-016:H.2.2(5.b)]

db. Date and time of each test-related activity, the identity of the individual(s) who performed the activity, and the identities of witnesses, as applicable. [SWE-118.c.3]
dc. Rationale for decisions. [SWE-118.d]
Appendix A14: Software Inspection Summary Report
Instructions: The text below defines the minimum required content for the Software Inspection Summary Report. For the reader’s convenience, two alternate methods of capturing this data have been provided at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ . Either of the following alternate methods may be used:

dd. The Microsoft Excel “Peer Review Toolkit,” TAB: “Issues & Concerns” provided at the above URL, or
de. The Microsoft Word version of the below “Software Inspection Summary Report” is provided in the document titled “Appendices for LMS-CP-7150.3: Class A, B, and All Safety-Critical Software” at the above URL.
When either of the above alternate methods is completed by the project while conducting a Software Inspection process, no additional data need be captured to fulfill the report requirements listed below.

The Software Inspection Report shall include: [SWE-119] [SWE-087] [SWE-137]
df. Identification information including: [SWE-119.a]
df. The item being inspected, [SWE-119.a]
df. The inspection type (e.g., Subsystem Requirements, Subsystem Design, Software Requirements, Architectural Design, Detailed Design, Source Code, Test Plan, Test Procedures, etc.), and [SWE-119.a] [SWE-089]
df. The inspection time and date. [SWE-119.a] [SWE-089]
dg. The summary of total time expended on each Software Inspection, including: [SWE-119.b] [SWE-089]
dg. The total hour summary (e.g., time expended in planning the Software Inspection, time spent in the overview meeting if held, time spent in Software Inspection meeting, time spent in separate meetings to resolve open issues and action items, time spent in rework, time spent in follow-up ensuring the completion criteria was met), and [SWE-119.b] [SWE-089]
dg. The time participants spent inspecting the product individually in preparation for the Software Inspection meeting. [SWE-089] [SWE-119.b]
Guidance: A project can use time expended on reviews to determine the inspection rate (e.g., lines of code reviewed per hour per reviewer). The inspection rate is an indicator of the quality of the review. For example, suppose a typical inspection rate for flight code is 250 lines per hour (per reviewer). If a review had an average rate of 350 lines of code per hour (per reviewer), then that review is likely to catch fewer defects. The project can also use time data to plan the duration and effort of future reviews. For more data on planning times and review rates see the “Peer Review/Inspection – Quick Reference Guide” at the above listed URL.
dh. Participant information, including: [SWE-119.c]
dh. The total number of participants, and [SWE-119.c] [SWE-089]
dh. The participants’ area of expertise. [SWE-119.c] [SWE-089]
di. The total number of defects found, including: [SWE-119.d]
di. The total number of major defects, [SWE-119.d] [SWE-089]
di. The total number of minor defects, and [SWE-119.d] [SWE-089]
di. The number of defects in each defect type, such as clarity, completeness, compliance, consistency, correctness/logic, data usage, fault tolerance, functionality, interface, level of detail, maintainability, performance, reliability, testability, and traceability. [SWE-089] [SWE-119.d]
dj. Software inspection results summary (i.e., pass, re-inspection required). [SWE-119.e] [SWE-089]
dk. Listing of all inspection defects. [SWE-119.f] [SWE-030] [SWE-031]
Definitions [NASA/SP-2007-6105: Appendix N]
Major:

- An error that would cause a malfunction or prevent attainment of an expected or specified result.

- Any error that would, in the future, result in an approved change request or failure report.

Minor:

- A violation of standards, guidelines, or rules that would not result in a deviation from requirements if not corrected, but could result in difficulties in terms of operations, maintenance, or future development.
Appendix A15: LaRC Software Metrics Collection Data
Submit the measures at the milestones specified in the table below to the “Langley Software Metrics Collection” system at https://sepg.larc.nasa.gov.[SWE-094].
The measurement milestones are defined as follows:
Create Project
Start of project formulation.
Start Development
The Software Management Plan is approved.
Annual Progress
The start of each fiscal year between Start Development and End Development.
End Development
The software is completed and transitioned to operations and maintenance.
Start Maintenance
The software is placed under maintenance.
Annual Maintenance
The start of each fiscal year between Start Maintenance and End Maintenance.
End Maintenance
The project is closed and the software is removed from service.
After software is released to operations, the Langley Software Metrics Collection system treats each subsequent release of the software as a separate project and each subsequent release is entered into the Langley Software Metrics Collection system beginning with the Create Project milestone. In the meantime, the software project continues to enter maintenance measures on the prior release until it is removed from service. [SWE-093] [SWE-094]
Software projects established solely to maintain heritage software start with the Create Project milestone and are immediately directed to the Start Maintenance milestone. [SWE-093] [SWE-094]
For each measure listed in the table below, the milestone is marked with either a blank cell, an “X,” “A|B,” or “#”.
 [SWE-093] [SWE-094]
<blank cell>
The project does not enter the measure at this milestone.
X
All projects enter the measure at this milestone.
A|B
Projects developing Class A or B software enter the measure at this milestone.
#
The project can change the value of this measure but is not required to enter a new value.
The “LaRC Measure Definitions” for each measure in the below table and the “Software Measurement Description for NASA Langley Research Center” that contains the rationale and use of each of the below measures are both at: https://sites-e.larc.nasa.gov/sweng/supporting-products/. [SWE-093] [SWE-094]
	Measure
	Entry Milestone for Measure

	
	Create Project
	Start Development
	Annual

Progress
	End Development
	Start Maintenance
	Annual Maintenance
	End Maintenance

	Project Name
	X
	#
	#
	#
	#
	#
	#

	Project Type
	X
	#
	#
	#
	#
	#
	#

	Application Domain
	X
	#
	#
	#
	#
	#
	#

	Software Class
	X
	#
	#
	#
	#
	#
	#

	Safety-Critical Determination
	X
	#
	#
	#
	#
	#
	#

	Primary Language
	X
	#
	#
	#
	#
	#
	#

	Software Manager’s Name
	X
	#
	#
	#
	#
	#
	#

	Software Manager’s Phone Number
	X
	#
	#
	#
	#
	#
	#

	Software Manager’s E-mail Address
	X
	#
	#
	#
	#
	#
	#

	Software Manager’s Org Code
	X
	#
	#
	#
	#
	#
	#

	Customer’s Name
	X
	#
	#
	#
	#
	#
	#

	Customer’s Phone Number
	X
	#
	#
	#
	#
	#
	#

	Customer’s E-mail Address
	X
	#
	#
	#
	#
	#
	#

	Customer’s Organization Type
	X
	#
	#
	#
	#
	#
	#

	CMMI Rated Development Organization
	A|B
	#
	#
	#
	#
	#
	A|B

	CMMI Rating
	A|B
	#
	#
	#
	#
	#
	A|B

	Actual Start Date
	
	X
	
	
	
	
	

	Planned End Date
	
	X
	X
	
	
	
	

	Actual End Date
	
	
	
	X
	
	
	

	Total Planned Effort
	
	X
	
	
	
	
	

	Total Planned Cost
	
	A|B
	
	
	
	
	

	Total Actual Effort
	
	
	
	X
	
	
	

	Total Actual Cost
	
	
	
	A|B
	
	
	

	Planned Effort for Fiscal Year
	
	X
	X
	
	X
	X
	

	Planned Cost for Fiscal Year
	
	A|B
	A|B
	
	A|B
	A|B
	

	Actual Effort for Fiscal Year
	
	
	X
	
	
	X
	X

	Actual Cost for Fiscal Year
	
	
	A|B
	
	
	A|B
	A|B

	Number of Requirements
	
	X
	
	X
	
	
	

	Number of Requirements Verified
	
	
	
	X
	
	
	

	Number of Defects Reported
	
	
	
	X
	
	X
	X

	Number of Defects Resolved
	
	
	
	X
	
	X
	X

	Number of Defects Open
	
	
	
	X
	X
	X
	X

	Actual Software Size

	
	
	
	X
	X
	X
	X

	Most Important Constraint
	
	
	
	X
	
	
	

	LMS Improvement Suggestion
	
	
	
	X
	
	
	X

	Project’s Greatest Challenge
	
	
	
	X
	
	
	X

	Project Best Practices
	
	
	
	X
	
	
	X

Appendix A16: Software User Manual
The Software User Manual shall contain: [SWE-115]
dl. Software summary. [SWE-115.a]
dl. Software application. [SWE-115.a] Provide a brief description of the intended uses of the software, including capabilities, operating improvements, and benefits expected from its use. [J-STD-016:J.2.1(3.1)]
dl. Software inventory. [SWE-115.a] Identify all software files, including databases and data files, that are required to be installed for the software to operate. Include security and privacy protection considerations for each file and identification of the software necessary to continue or resume operation in case of an emergency.
[J-STD-016:J.2.1(3.2)]
dl. Software environment. [SWE-115.a] Identify the hardware, software, manual operations, and other resources needed for a user to install and run the software. Include, as applicable, identification of:
dl. Computer equipment that is required to be present, including amount of memory needed, amount of auxiliary storage needed, and peripheral equipment such as printers and other input/output devices.
dl. Communications equipment that is required to be present.
dl. Other software that is required to be present, such as operating systems, databases, data files, utilities, and other supporting systems.
dl. Forms, procedures, or other manual operations that are required to be present.
dl. Other facilities, equipment, or resources that are required to be present. [J-STD-016:J.2.1(3.3)]
dl. Software organization and overview of operation. [SWE-115.a] Provide a brief description of the organization and operation of the software from the user’s point of view. Include, as applicable:
dl. Logical components of the software, from the user’s point of view, and an overview of the purpose/operation of each component.
dl. Performance characteristics that can be expected by the user, such as:

dl. Type, volume, rate of input accepted.
dl. Type, volume, accuracy, rate of output the software can produce.
dl. Typical response time and factors that affect it.
dl. Typical processing time and factors that affect it.
dl. Limitations, such as number of events that can be tracked.
dl. Error rate that can be expected.
dl. Reliability that can be expected.
dl. Relationship of the functions performed by the software with interfacing systems, organizations, or positions..
dl. Supervisory controls that can be implemented (such as passwords) to manage the software.
[J-STD-016:J.2.1(3.4)]
dl. Contingencies and alternate states and modes of operation. [SWE-115.a] Explain differences in what the user will be able to do with the software at times of emergency and in various states and modes of operation, if applicable. [J-STD-016:J.2.1(3.5)]
dl. Security and privacy protection. [SWE-115.a] Provide an overview of the security and privacy protection considerations associated with the software. Include a warning regarding making unauthorized copies of software or documents, if applicable. [J-STD-016:J.2.1(3.6)]
dl. {Safety-Critical} Provide an overview of the safety considerations and describe safety-related items/concerns or constraints associated with the software. [SWE-115.d]
dl. Additionally, identify all safety-related commands, data, input sequences, options, error message descriptions and corrective actions, and other items necessary for the safe operation of the system (or describe how they are identified within this manual, such as marking them with “WARNING” or “CAUTION”). [NASA-STD-8719.13B:7.3 & 7.3.1]
dl. Assistance and problem reporting. [SWE-115.a] Identify points of contact and procedures to be followed to obtain assistance and report problems encountered in using the software. [J-STD-016:J.2.1(3.7)]
dm. Access to the software. [SWE-115.b] Provide step-by-step procedures oriented to the first time/occasional user. Present enough detail so that the user can reliably access the software before learning the details of its functional capabilities. Where applicable, include safety precautions, marked by WARNING or CAUTION.
[J-STD-016:J.2.1(4)]
dm. First-time user of the software. [SWE-115.b]
dm. Equipment familiarization.

dm. Procedures for turning on power and making adjustments.
dm. Dimensions and capabilities of the visual display screen.
dm. Appearance of the cursor, how to identify an active cursor if more than one cursor can appear, how to position a cursor, and how to use a cursor.
dm. Keyboard layout and role of different types of keys and pointing devices.
dm. Procedures for turning power off if special sequencing of operations is needed.
dm. Access control. Present an overview of the access and security features of the software that are visible to the user. Include, as applicable:

dm. How and from whom to obtain a password.
dm. How to add, delete, or change passwords under user control.
dm. Security and privacy protection considerations pertaining to the storage and marking of output reports and other media that the user will generate.
dm. Installation and setup. Describe any procedures that the user is required to perform to be identified or authorized to access or install software on the equipment, to perform the installation, to configure the software, to delete or overwrite former files or data, and to enter parameters for software operation.
[J-STD-016:J.2.1(4.1)]
dm. Initiating a session. [SWE-115.b] Provide step-by-step procedures for beginning work, including any options available. Include a checklist for problem determination in the event difficulties are encountered.
[J-STD-016:J.2.1(4.2)]
dm. Stopping and suspending work. [SWE-115.b] Describe how the user can cease or interrupt use of the software and how to determine whether normal termination or cessation has occurred. [J-STD-016:J.2.1(4.3)]
dn. Processing reference guide. [SWE-115.c] Provide the user with procedures for using the software. Where applicable include safety precautions, marked by WARNING or CAUTION. [J-STD-016:J.2.1(5)]
dn. Capabilities. [SWE-115.c] Briefly describe the interrelationships of the transactions, menus, functions, or other processes in order to provide an overview of the use of the software. [J-STD-016:J.2.1(5.1)]
dn. Conventions. [SWE-115.c] Describe any conventions used by the software, such as the use of colors in displays, the use of audible alarms, the use of abbreviated vocabulary, and the use of rules for assigning names or codes. [J-STD-016:J.2.1(5.2)]
dn. Processing procedures. [SWE-115.c] Identify the functions, menus, transactions, or other processes available to the user. Describe and give options and examples, as applicable, of menus, graphical icons, data entry forms, user inputs, inputs from other software or hardware that may affect the software’s interface with the user, outputs, diagnostic or error messages or alarms, and help facilities that can provide on-line descriptive or tutorial information. [J-STD-016:J.2.1(5.3)]
dn. Related processing. [SWE-115.c] Identify and describe any related batch, offline, or background processing performed by the software that is not invoked directly by the user. Specify any user responsibilities to support this processing. [J-STD-016:J.2.1(5.4)]
dn. Data backup. [SWE-115.c] Describe procedures for creating and retaining backup data that can be used to replace primary copies of data in event of errors, defects, malfunctions, or accidents. [J-STD-016:J.2.1(5.5)]
dn. Recovery from errors, malfunctions, and emergencies. [SWE-115.c] Present detailed procedures for restart or recovery from errors or malfunctions occurring during processing and for ensuring continuity of operations in the event of emergencies. [J-STD-016:J.2.1(5.6)]
dn. Messages. [SWE-115.c] List all error messages, diagnostic messages, and information messages that can occur while accomplishing any of the user’s functions. Identify and describe the meaning of each message and the action that should be taken after each such message. [J-STD-016:J.2.1(5.7)]
do. Assumptions and limitations. [SWE-115.d]
dp. Information that is unique or specific for each version of the software (e.g., new or modified features, new and modified interfaces). [SWE-115.e]
Appendix A17: Safety-Critical Software Checklist
{Class C, D, or E} When the project is determined to have safety-critical software, it is recommended that the project use items a through m below as a checklist to support the identification of safety-related requirements, risks, and their mitigations. [NPR 7150.2A Appendix D Note 7 modified]
{Class A or B} When a project is determined to have safety-critical software, the project ensures that items a through m below are implemented in the software. [SWE-134]
Guidance: Items a through m are additional software safety requirements that are considered best practices for safety-critical systems incorporating safety-critical software. These requirements are applicable to components that reside in a safety-critical system, and the components that control, mitigate or contribute to a hazard as well as software used to command hazardous operations/activities. These requirements complement the processes identified in NASA-STD-8719.13, Software Safety Standard.
dq. Safety-critical software is initialized, at first start and at restarts, to a known safe state. [SWE-134.a]
Guidance: Aspects to consider when establishing a known safe state include state of the hardware and software, operational phase, device capability, configuration, file allocation tables, and boot code in memory.

dr. Safety-critical software safely transitions between all predefined known states. [SWE-134.b]
ds. Termination performed by software of safety-critical functions is performed to a known safe state. [SWE-134.c]

dt. Operator overrides of safety-critical software functions require at least two independent actions by an operator. [SWE-134.d]
Guidance: Multiple independent actions by the operator help to reduce potential operator mistakes.

du. Safety-critical software rejects commands received out of sequence, when execution of those commands out of sequence can cause a hazard. [SWE-134.e]

dv. Safety-critical software detects inadvertent memory modification and recovers to a known safe state. [SWE-134.f]

Guidance: Memory modifications may occur due to radiation-induced errors, electromagnetic interference, uplink errors, configuration errors, or other causes so the computing system must be able to detect the problem and recover to a safe state. As an example, computing systems may implement error detection and correction, software executable and data load authentication, periodic memory scrub, and space partitioning to provide protection against inadvertent memory modification. Features of the processor and/or operating system can be utilized to protect against incorrect memory use.

dw. Safety-critical software performs integrity checks on inputs and outputs to/from the software system. [SWE-134.g]
Guidance: Software needs to accommodate both nominal inputs (within specifications) and off-nominal inputs, from which recovery may be required.

dx. Safety-critical software performs prerequisite checks prior to the execution of safety-critical software commands. [SWE-134.h]
Guidance: The requirement is intended to preclude the inappropriate sequencing of commands. Appropriateness is determined by the project and conditions designed into the safety-critical system. Safety-critical software commands are commands that can cause or contribute to a hazardous event or operation.

dy. No single software event or action is allowed to initiate an identified hazard. [SWE-134.i]

dz. Safety-critical software responds to an off-nominal condition within the time needed to prevent a hazardous event. [SWE-134.j]

Guidance: The intent is to establish a safe state following detection of an off-nominal indication. The safety mitigation must complete between the time that the off-nominal condition is detected and the time the hazard would occur without the mitigation. The safe state can either be an alternate state from normal operations or can be accomplished by detecting and correcting the fault or failure within the time frame necessary to prevent a hazard and continuing with normal operations.

ea. Software provides error handling of safety-critical functions. [SWE-134.k]

Guidance: Error handling is an implementation mechanism or design technique by which software faults and/or failures are detected, isolated, and recovered to allow for correct run-time program execution. The software error handling features that support safety-critical functions may detect and respond to hardware and operational faults and/or failures.

eb. Safety-critical software has the capability to place the system into a safe state. [SWE-134.l]

Guidance: The design of the system must provide sufficient sensors and effectors, as well as self checks within the software, in order to enable the software to detect and respond to system potential hazards.

ec. The software coding standard strongly discourages unsafe language features (e.g., pointers or C-language memcpy function) and requires these features to be clearly identified and documented whenever used. [NASA-STD-8719.13B:6.3.1.1]
Appendix B: Plan Exemptions
There are no predefined plan exemptions in this procedure.

Appendix C: LaRC Compliance Matrix for Class A, B, and All Safety-Critical Software
Instructions: For each STEP and Appendix listed below, complete the 3rd and 4th column of this matrix or equivalent; complete all remaining columns for each tailoring request. Obtain the approvals listed at the bottom of the matrix. See “Appendices for LMS-CP-7150.3: Class A, B, and All Safety-Critical Software” at: https://sites-e.larc.nasa.gov/sweng/supporting-products/ for a Microsoft Word electronic copy of this Matrix.
Note: To add additional rows within a STEP, right click on a cell in the middle of the row, select “Insert” and select “Insert Rows Above” or “Insert Rows Below”; follow a similar process for adding columns.
Name of Project:

Date Approval Requested:

 [SWE-125]
	LMS Procedure
	Planned Implementation
	Tailoring

	Step
#
	Step Name
	Step or substep ID#
	Responsible party

	If an LMS CP step is tailored, explain the tailoring requested
	Impacts/risks associated with the tailoring request
	Justification for tailoring requests (why impacts and risks are acceptable)

	1
	Assess options for software development vs. acquisition
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	2
	Acquisition preparation
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	3
	Develop Software Plans
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	4
	Review Software Management Plan (SMP) and Compliance Matrix
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	5
	Execute plans and manage software activities
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	6
	Ensure requirements, design, and test documentation are maintained
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	7
	Develop & validate Software Requirements Specification
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	8
	Develop & verify Software Design Documents
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	9
	Develop Test Plans & Procedures concurrently with Steps 7, 8, & 9
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	10
	Develop, verify, & validate code
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	11
	Deliver Software Products or Data
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	LMS Procedure
	Planned Implementation
	Tailoring

	Appen-dix #
	Appendix Name
	Appendix item or subitem ID#
	Responsible party

	If an LMS CP Appendix item is tailored or Not Applicable, explain tailoring request or mark it as NA

	Impacts/risks associated with the tailoring request
	Justification for tailoring requests (why impacts and risks are acceptable)

	A1
	Software Management Plan
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A2
	Software Configuration Management Plan
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A3
	Software Test Plan
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A4
	Software Maintenance Plan
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A5
	Software Requirements Specification
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A6
	Software Data Dictionary
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A7
	Software Design Description
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A8
	Interface Design Description
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A9
	Software Change Request
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A10
	Software Problem Report
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A11
	Software Test Procedures
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	LMS Procedure
	Planned Implementation
	Tailoring

	Appen-dix #
	Appendix Name
	Appendix item or subitem ID#
	Responsible party

	If an LMS CP Appendix item is tailored or Not Applicable, explain tailoring request or mark it as NA

	Impacts/risks associated with the tailoring request
	Justification for tailoring requests (why impacts and risks are acceptable)

	A12
	Software Version Description
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A13
	Software Test Report
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A14
	Software Inspection Summary Report
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A16
	Software User Manual
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	A17
	Safety-Critical Software Checklist
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Approvals Required for Planned Implementation

Software Manager:

Date:

Approved (Yes, No) Sig.

Software Manager’s Line Manager:

Date:

Approved (Yes, No) Sig.8

Additional Approvals Required if Tailoring is Requested (Follow requirements for obtaining approvals in LPR 7150.2, Section 2.Tailoring and Waivers.)

Applicable project personnel:

Date:

Approved (Yes, No) Sig. 8

LaRC Mission Assurance Branch (C202):
Date:

Approved (Yes, No) Sig. 8

Software Engineering Process Group Rep:
Date:

Concurred (Yes, No) Sig. 8

Technical Authority (Directorate Head):

Date:

Approved (Yes, No) Sig. 8

Other:

Date:

Approved (Yes, No) Sig. 8

�Operational scenarios are step-by-step descriptions of how a proposed system should operate and interact with its users and its external interfaces (e.g., other systems). Scenarios should be described in a manner that will allow engineers to walk through them and gain an understanding of how all the various parts of the proposed system function and interact as well as validate that the system will satisfy the user's needs and expectations. Operational scenarios should be described for all operational modes, mission phases (e.g., installation, startup, typical examples of normal and contingency operations, shutdown, maintenance, and safing), and critical sequences of activities for all classes of users identified. Each scenario should include events, actions, stimuli, information, and interactions as appropriate to provide a comprehensive understanding of the operational aspects of the system. [Based upon IEEE Std 1362-1998] Operational scenarios should span all the following items (during nominal, off-nominal, and stressful conditions) that could occur during operations: mission phase, mode, and state transitions; first-time events; operational performance limits; fault protection routines; failure detection, isolation, and recovery logic; operational responses to transient or off-nominal sensor signals; ground-to-spacecraft uplink and downlink. [Based on draft NPR2820]

�Verification methods may include:

a) Demonstration: The operation of the software item, or a part of the software item, that relies on observable functional operation not requiring the use of instrumentation, special test equipment, or subsequent analysis. [J-STD-016:F.2.2(4)]

b) Test: The operation of the software item, or a part of the software item, using instrumentation or other special test equipment to collect data for later analysis. [J-STD-016:F.2.2(4)]

c) Analysis: The processing of accumulated data obtained from other verification methods. Examples are reduction, interpolation, or extrapolation of test results. [J-STD-016:F.2.2(4)]

d) Software Peer Review/Inspection: A visual examination of a software product to detect and identify software anomalies, including errors and deviations from standards and specifications [IEEE 1028-2008 IEEE Standard for Software Reviews and Audits]. Guidelines for software peer reviews/inspections are contained in NASA-STD-2202-93, NASA Software Formal Inspection Standard. [NPR7150.2A: A.34] The visual examination of software item code, documentation, etc. [J-STD-016:F.2.4(4)] The visual examination of system components, documentation, etc. [J-STD-016:F.2.2(4)]

e) Special verification methods: Any special verification methods for the software item, such as special tools, techniques, procedures, facilities, and acceptance limits. [J-STD-016:F.2.2(4)]

� Verification methods may include:

a) Demonstration: The operation of the software item, or a part of the software item, that relies on observable functional operation not requiring the use of instrumentation, special test equipment, or subsequent analysis. [J-STD-016:F.2.2(4)]

b) Test: The operation of the software item, or a part of the software item, using instrumentation or other special test equipment to collect data for later analysis. [J-STD-016:F.2.2(4)]

c) Analysis: The processing of accumulated data obtained from other verification methods. Examples are reduction, interpolation, or extrapolation of test results. [J-STD-016:F.2.2(4)]

d) Software Peer Review/Inspection: A visual examination of a software product to detect and identify software anomalies, including errors and deviations from standards and specifications [IEEE 1028-2008 IEEE Standard for Software Reviews and Audits]. Guidelines for software peer reviews/inspections are contained in NASA-STD-2202-93, NASA Software Formal Inspection Standard.[NPR7150.2A: A.34] The visual examination of software item code, documentation, etc. [J-STD-016:F.2.4(4)] The visual examination of system components, documentation, etc. [J-STD-016:F.2.2(4)]

e) Special verification methods: Any special verification methods for the software item, such as special tools, techniques, procedures, facilities, and acceptance limits. [J-STD-016:F.2.2(4)]

� The following provides a link to the University of Southern California public code counters:

�HYPERLINK "http://sunset.usc.edu/research/CODECOUNT/"�http://sunset.usc.edu/research/CODECOUNT/�

� As specified in Appendix A of LMS-CP-7150.3: Class A, Class B, and All Safety-Critical Software, only those requirements in Appendix A1 through A14 marked with an asterisk “*” may be denoted as NA.

�As specified in Appendix A of LMS-CP-7150.3: Class A, Class B, and All Safety-Critical Software, only those requirements in Appendix A1 through A14 marked with an asterisk “*” may be denoted as NA.

� Approval by the Software Manager confirms that the project plans to complete all LMS-CP-7150.3 requirements and any requested tailoring specified in the above Compliance Matrix.

� Optional: Written or electronic signature.

� The Line Manager reviews and approves this Compliance Matrix to ensure the project complies with LMS-CP-7150.3 and to approve tailoring requests.

� Individuals accepting the risk associated with the tailoring.

� The Software Engineering Process Group representative from the Software Manager’s Directorate.

� The Software Manager’s Directorate Head.

� This may be the LaRC Director SMA Office, NASA HQ CE, or HQ Chief SMA (see LPR 7150.2A for approvals required).

1
From IEEE/EIA Standard 12207.0-1996, IEEE/EIA Standard, Industry Implementation of International Standard ISO/IEC 12207: 1995, Standard for Information Technology Software Life Cycle Processes; Copyright 1998, by IEEE and EEE/EIA Standard 12207.1-1997, IEEE/EIA Standard, Industry Implementation of International Standard ISO/IEC 12207: 1995, Standard for Information Technology Software Life Cycle Processes Life Cycle Data; Copyright 1998, by IEEE. All rights reserved.

Page 1 of 43

