Plan for Software Aspects of Certification for the Guidance and Control Software Project

Kelly J. Hayhurst

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681

This document was produced as part of a software engineering case study conducted at NASA Langley Research Center. Although some of the requirements for the Guidance and Control Software application were derived from the NASA Viking Mission to Mars, this document does not contain data from an actual NASA mission.

Preface

The NASA Langley Research Center has been conducting a series of software error studies in an effort to better understand the software failure process and improve development and reliability estimation techniques for avionics software. The Guidance and Control Software (GCS) project is the latest study in the series (ref. 2). This project involves production of guidance and control software for the purpose of gathering failure data from a credible software development environment. To increase the credibility and relevance of this study, guidelines used in the development of commercial aircraft were adopted. The use of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, "Software Considerations in Airborne Systems and Equipment Certification," is required by the Federal Aviation Administration (FAA) for developing software to be certified for use in commercial aircraft equipment (ref. 1).

This document is one part of the life cycle data required to fulfill the RTCA/DO-178B guidelines. The life cycle data are used to demonstrate compliance with the guidelines by describing the application of the procedures and techniques used during the development of flight software and the results of the development process. For the GCS project, the life cycle data consists of the following:

· Plan for Software Aspects of Certification

· Software Development Standards
· Software Requirements Document
· Software Design Description

· Software Source Code
· Executable Object Code

· Software Verification Plan
· Software Verification Procedures and Cases
· Software Verification Results
· Software Quality Assurance Plan
· Software Quality Assurance Records
· Problem and Action Reports
· Software Configuration Management Plan
· Software Configuration Management Records
· Software Configuration Index

· Software Accomplishment Summary

A GCS implementation (code which fulfills the requirements outlined in the Software Requirements Data) runs in conjunction with a software simulator that provides input based on an expected usage distribution in the operational environment, provides response modeling, and receives data from the implementation. For the purposes of the project, a number of GCS implementations are being developed by different programmers according to the structured approach found in the DO-178B guidelines. The GCS simulator is designed to allow an experimenter to run one or more implementations in a multitasking environment and collect data on the comparison of the results from multiple implementations. Certain constraints have been incorporated in the software requirements due to the nature of the GCS project.

Contents

1

1. Introduction

1.1 Overview of the GCS Project
1

1.2 Background
2

2. Overview of the Guidance and Control Application
3

2.1 Software Overview
3

3. Certification Considerations
7

4. Software Development Plan
7

4.1 Organizational Responsibility
7

4.2 Life Cycle Processes
10

4.3 Software Life Cycle Data
12

5. Project Milestones and Schedule
14

6. Conclusion
15

References
17

1. Introduction

As stated in section 11.1 of the Requirements and Technical Concepts for Aviation RTCA/DO-178B guidelines, "Software Considerations in Airborne Systems and Equipment Certification," (ref. 1) the Plan for Software Aspects of Certification for a project is the primary means used by the certification authority, namely the Federal Aviation Administration (FAA), for determining whether an applicant is proposing a software life cycle that is commensurate with the rigor required for the level of software being developed. To this extent, this document contains an overview of the Guidance and Control Software (GCS) Project including:

· an overview of the guidance and control application,

· statement of certification considerations,

· discussion of the software development plan, including the software life cycle processes and corresponding data, and

· the project milestones and schedule.

In an effort to increase our understanding of software, NASA Langley Research Center has conducted a series of experiments over the past twenty years to generate data to help characterize the software development process (ref. 2). With an increased understanding of the failure behavior of software, improved methods for producing reliable software and assessing reliability can be developed. The current experiment, the GCS project, was started originally in 1985 at the Research Triangle Institute (RTI) (ref. 3) to: (1) collect data on the faults that occur during the software life cycle, (2) collect data on faults that occur in operational guidance and control software, and (3) make observations on the effectiveness of life cycle processes that complies with the DO-178B guidelines. To do this, the GCS project involves the development of two separate implementations of the GCS where the life cycle activities comply with the RTCA DO-178B guidelines.

This document presents an overview of the software life cycle activities for this project and discusses why various development decisions were made, especially with respect to the experimental nature of this project. Details concerning the integral development processes are contained in the Software Verification Plan, Software Configuration Management Plan, and Software Quality Assurance Plan. The following section gives a general overview of the GCS project.

1.1 Overview of the GCS Project

For the GCS project, a GCS implementation is defined to be source code which fulfills the requirements outlined in the Guidance and Control Software Development Specification (ref. 4), commonly referred to as the GCS specification. The development of two implementations of the GCS will be start from a common specification of the software requirements and proceed independently through the design, code, and integration processes. A GCS implementation will run in conjunction with a software simulator that provides input to the implementation based on an expected usage distribution in the operational environment, provides response modeling for the guidance and control application, and receives data from the implementation. The GCS simulator is designed to allow an experimenter to run one or more implementations in a multitasking environment and collect data on the comparison of the results from multiple implementations. Certain constraints are incorporated in the software requirements and project standards (especially standards regarding communication protocol) due to the nature of the GCS project.

1.2 Background

The first task in the start of the GCS project in 1985 was to develop the software requirements document for the guidance and control application. The original software requirements for the guidance and control application were reverse-engineered from a software program written in the late 1960's to simulate the Viking lander vehicle approaching the surface of the planet Mars (ref. 5). Engineers at RTI produced the original requirements document for the guidance and control software, called the Guidance and Control Software Development Specification.

Since the project started in 1985, the DO-178A guidelines (ref. 6) were originally used on the project as a model for the software development process. At RTI, three different programmer/analyst teams were assigned to develop GCS implementations. Because the GCS specification had already been generated, the DO-178A guidelines were to be applied to the development process starting with the design of the software implementations from the existing specification. The development of three separate implementations of the GCS following the DO-178A guidelines was started at RTI, along with the documentation of the software development process required by the DO-178A guidelines The software development processes for the GCS project included the following processes:

· software design,

· software coding, and

· integration.

All three RTI-developed implementations of the GCS went through the design and coding processes and were at various stages of the integration process when they were delivered to NASA in the spring of 1992. After consultation with the FAA, a decision was made to extensively review and revise the GCS specification and restart the software development process under the DO-178B guidelines, which were released in December 1992. Upon delivery to NASA, new programmer and verification analyst teams were assigned along with support from new System Analysis, Software Quality Assurance, and Configuration Management personnel. However, due to resource limitations, only two of the implementations are being developed at Langley Research Center.

Due to the transitioning of the project from RTI to NASA along with the new focus on the DO-178B guidelines, the decision was made to revisit some of the original development activities. The following are the software development processes for the in-house GCS project:

· transitional software requirements development (focusing on the review and modification of the existing software requirements document),

· transitional software design, (where the existing design for each GCS implementation developed at RTI will be modified to meet the revised software requirements)

· software coding,

· integration.

The following chapter provides an overview of the GCS application, including a brief description of the software functions. A full account of the software requirements can be found in the Guidance and Control Software Development Specification, which serves as the Software Requirements Data for the GCS project.

2. Overview of the Guidance and Control Application

According to DO-178B, the software requirements process uses the system requirements and system architecture to develop the high-level requirements for the desired software. Correspondingly, DO-178B states that the Plan for Software Aspects of Certification should provide an overview of the system. For the GCS project, however, there is no real system to be developed nor documentation of real system requirements. The GCS project is solely a research effort to investigate the faults that occur in the development and operation of software, avionics applications in particular. The GCS implementations will only be executed in a simulated operational environment to collect software failure data. Consequently, the GCS project started with the definition of software requirements for a specific component of a guidance and control system, namely the terminal descent phase. Without system requirements, certain assumptions must be made in the development of the software requirements. Without system requirements, there also is no system safety assessment which is an important aspect of any development process that needs to comply with the DO-178B guidelines. Lack of system requirements also impacts the extent to which the project will comply with the DO-178B guidelines since no traces can be made from the software requirements back to the system requirements and safety assessment.

2.1 Software Overview

The definition of the software requirements for the GCS project focuses on two primary needs for the software: (a) to provide guidance and engine control of the lander vehicle during its terminal phase of descent onto the planet's surface and (b) to communicate sensory information to an orbiting platform about the vehicle and its descent. The lander vehicle to be controlled includes a guidance package containing sensors which obtain information about the vehicle state, a guidance and control computer, and actuators providing the thrust necessary for maintaining a safe descent. The vehicle has three accelerometers (one for each body axis), one Doppler radar with four beams, one altimeter radar, two temperature sensors, three strapped-down gyroscopes, three opposed pairs of roll engines, three axial thrust engines, one parachute release actuator, and a touch down sensor. The vehicle has a hexagonal, box-like shape with three legs and a surface sensing rod protruding from its undersurface. Figure 1 shows a sketch of the lander vehicle during the terminal phase of descent, and Figure 2 shows an engineering drawing of the vehicle from three perspectives.

Figure 1. The Lander Vehicle During Descent

Figure 2. Engineering Illustration of the Lander Vehicle

In general, the GCS is designed to control a planetary lander during its final descent to the planet’s surface. After the lander has dropped from orbit, the software will control the engines of the vehicle to the surface of a planet. The initialization of the GCS starts the sensing of vehicle altitude. When a predefined engine ignition altitude is sensed by the altimeter radar, the GCS begins guidance and control of the lander. The axial and roll engines are ignited; while the axial engines are warming up, the parachute remains connected to the vehicle. During this engine warm-up phase, the aerodynamics of the parachute dictate the trajectory followed by the vehicle. Vehicle attitude is maintained by firing the engines in a throttled-down condition. Once the main engines become hot, the parachute is released and the GCS performs an attitude correction maneuver and then follows a controlled acceleration descent until a predetermined velocity-altitude contour is crossed. The GCS then attempts to maintain the descent of the lander along this predetermined velocity-altitude contour. The lander descends along this contour until a predefined engine shut off altitude is reached or touchdown is sensed. After all engines are shut off, the lander free-falls to the surface.

Figure 3 shows the phases of the terminal descent trajectory of the lander. With the control laws specified in the software requirements, the probability that the lander will safely land on the planet’s surface should be at least 0.95; that is, given a large number of simulated trajectories, the lander should successfully land (as opposed to crashing) on the planet’s surface at least 95% of the time.

The following section concerns the certification aspects regarding this guidance and control application.

Figure 3. A Typical Terminal Descent Trajectory

3. Certification Considerations

The two primary functions of the GCS are: (1) to provide guidance and engine control of the lander vehicle during its terminal phase of descent onto the planet's surface and (2) to communicate sensory information to an orbiting platform about the vehicle and its descent. Although there is not a system safety assessment for the GCS project, it is assumed that the loss of either of these functions could cause or contribute to a catastrophic failure condition for the vehicle. Consequently, the guidance and control application as defined in the GCS specification is considered to be Level A software, requiring the highest level of effort to show compliance with the certification requirements. Since the GCS is assumed to be Level A, (as opposed to a lower level requiring less effort to show compliance), no justification for this rating is provided.

4. Software Development Plan

As discussed in chapter 1, the software development processes for the GCS project consist of the requirements, design, code, and integration processes, where the project artifacts from the requirements and design processes are modifications of artifacts produced during the original effort at RTI. In general, the development processes follow a modified waterfall life cycle model as shown in Figure 4. In this figure, the planning process is shown at the top level, and this process feeds into the rest of the life cycle activities. Then, the software quality assurance (SQA) process monitors the rest of the life cycle processes, and the configuration management process controls the artifacts produced. For each of the four development processes, there is some level of verification activities. Note that the verification activity in the requirements process only consists of an informal review of the software requirements document, largely because there is no system requirements document or safety assessment for the project. After the requirements process, the remainder of the life cycle activities are intended to comply with DO-178B.

The following section describes the organizational responsibilities for all life cycle activities and provides more details on the life cycle processes and products.

4.1 Organizational Responsibility

The GCS project involves two independent teams, where each team, consisting of a programmer and verification analyst, is tasked to develop a single GCS implementation according to the DO-178B guidelines. The two GCS implementations have been assigned planetary names: Mercury and Pluto. In addition to the programmer and verification analyst teams, other project personnel are assigned the roles of Software Quality Assurance (SQA) representative, System Analyst (responsible for the software requirements), and Configuration Manager. Due to resource limitations, the software integral processes of Software Configuration Management and SQA will be administered independently across the implementations, but the systems and individuals used to carry out these processes will be the same. For example, one configuration management system will store all data items for all implementations, one person will do configuration management for all implementations, and one person will do SQA for all implementations. Further, there will not be a certification liaison process for the GCS project. Table 1 lists the personnel assigned to the GCS project.

Figure 4. Life Cycle Activities Flow for the GCS Project

Note that in a real development project, the SQA representative would be different that the project leader and would report to a different management organization. However, due to personnel transfers and limitations on project resources, the same person ultimately was required to perform both roles.

Table 1 gives a general overview of the responsibilities of six major project roles. Since the two GCS implementations are to proceed independently through the development process, special constraints have been placed on the level of communication allowed among the project participants. In particular, the programmers should not communicate with each other about their implementations, and the verification analysts are not permitted to discuss specific details about their implementations. The Software Development Standards contains more details on the communication protocol for all project participants.

Table 1. GCS Project Personnel and Organization

Project Role
Responsible Personnel
Organization
Responsibility

Project Leader
Kelly Hayhurst
System Validation Methods Branch (NASA LaRC)
Managing all of the activities of the GCS project, including providing planning, technical direction, and coordination with respect to all life cycle processes, collecting and analyzing data, and scheduling the major milestones of the project to meet the goals of the project.

SQA representative
Kelly Hayhurst

Providing confidence that the software life cycle processes produce software that conforms to its requirements by assuring that project activities are performed in compliance with DO-178B and project standards, as defined in the planning documents.

Configuration Manager
Laura Smith
System Validation Methods Branch (NASA LaRC)
Providing configuration management of all life cycle data (documentation, design, code, test cases, and simulator) associated with the development of the GCS implementations. in accordance with the DO-178B guidelines and project standards.

System Analyst
Bernice Becher
System Validation Methods Branch (Lockheed)
Providing expertise regarding the software requirements for the guidance and control system (described in the GCS specification) to project participants, and maintaining the GCS specification in accordance with the DO-178B guidelines and project standards.

Programmers

Mercury Programmer
Andy Boney
Computer Science Corp.
Independently developing one implementation of the guidance and control software according to the GCS specification, DO-178B

Pluto Programmer
Paul Carter
Computer Science Corp.
guidelines, and the Software Development Standards. This includes the generation of the detailed design description, source code, and executable object code.

Verification Analysts

Mercury Analyst
Debbie Taylor
Computer Science Corp.
Defining and conducting all of the verification activities associated with the development of one GCS implementation according to the

Pluto Analyst
Rob Angellatta
System Validation Methods Branch (Lockheed)
GCS specification, DO-178B guidelines, and the Software Development Standards.

Simulator Operator
Bernice Becher

Developing, maintaining, and documenting the GCS simulator. Also, assists in running experiments.

4.2 Life Cycle Processes

At a high level, the software life cycle processes for the GCS project consist of: the software planning process, the software development processes, and the integral processes. The software planning process defines and coordinates the software development processes and the integral processes. The software development processes are made up of the software requirements, software design, software coding, and the integration processes; those processes that directly produce the software product. The integral processes surround the software development processes to ensure the correctness, control, and integrity of the software products. The integral processes are the software verification, configuration management, and quality assurance processes. Table 2 shows the objectives for each of the life cycle processes based on the tables in Annex A of DO-178B.

Table 2. Activities and Products of the Life Cycle Processes

Process Objectives
Major Activities
Products

Planning Process

Define Development and Integral Processes

- transition criteria

- life cycle

- project standards
Revise project planning documents from RTI to comply with DO-178B
Plan for Software Aspects of Certification

Software Development Standards

Software Verification Plan

Software Configuration Management Plan

Software Quality Assurance Plan

Development Process
Define high-level requirements

Define low-level requirements & software architecture

Develop Source Code

Generate Executable Object Code

Identify derived requirements
Modify GCS specification (high-level requirements)

Update (RTI-generated) detailed design descriptions (using Teamwork)

Develop source code
Revised GCS specification (including any derived requirements)

Detailed Design Description for Mercury and Pluto (before Design Review)

Cleanly compiled version of Mercury and Pluto source code (before review & testing)

Software Quality Assurance Process

Assure that development and integral processes comply with plans and standards

Conduct Conformity Review
Review all processes and products for compliance

Participate in design, code, and test case reviews

Conduct software conformity review

SQA Records from all reviews for each implementation

Table 2. (cont.) Activities and Products of the Life Cycle Processes

Process Objectives
Major Activities
Products

Verification Process
Review High-level requirements

Review low-level requirements & software architecture

Review source code

Test coverage of all software requirements (100% requirements coverage is achieved)

Test coverage of software structure (multiple condition/decision coverage is achieved)
Conduct Team Design Inspection

Conduct Team Source Code Inspection

Develop and perform Requirements-based testing at four levels: unit, subframe, frame, and trajectory.

Conduct analysis of source code (after requirements-based testing) to determine if MC/DC is achieved

Perform Structure-based testing as necessary to achieve Modified Condition/Decision Coverage.
Traceability Matrix for software requirements

Verification Procedures

Post-Design Review Design Description for Mercury and Pluto

Verification Results for Mercury and Pluto Design Reviews (including Design to Requirements Trace)

Code-reviewed version of Mercury and Pluto source code

Verification Results for Mercury and Pluto Reviews (including Code to Requirements Trace)

Requirements-based Test Cases

Structure-based Test Cases

Mercury and Pluto versions that completed requirements-based testing

Mercury and Pluto versions that completed structure-based testing

Verification Results for Mercury and Pluto Testing (including Test case to Requirements Trace)

Configuration Management Process
Provide identification for all configuration items

Provide change control system

Provide archive and retrieval services
Define labeling system for all configuration items

Establish a change control system using the Code Management System (CMS)

Develop a Problem and Action Reporting System for Development Products (CC1) and Support Documentation (CC2)

Define and implement procedures for archive and retrieval

Document and control software development environment
Configuration Management Index

Life Cycle Environment Configuration Index

Configuration Management Records

Completed Problem and Action Reports

Completed Support Documentation Change Reports

As with all life cycle models, there must be some criteria to indicate when to progress from one process to the other. The primary transition criteria for the development processes is based on the completion of the verification of the main products of those processes. Table 3 gives the transition criteria for the GCS development processes.

Table 3. Transition Criteria for the Software Development Processes

Development Process
Inputs
Transition Criteria to Next Process

Requirements
GCS specification from RTI
Informal review of version 2.2 of the GCS specification and approval by the project leader.

Design
version 2.2 of the GCS specification
Completion of all problem reports from the Design Review. (SQA approval is required for completion of problem reports.)

Code
Design Description
Completion of all problem reports from the Code Review.

Integration

· Requirements-based Testing

· Structure-based Testing
Source Code

Executable Object Code

Requirements-based Test cases
Review, approval, and successful execution of all requirements-based test cases

--

Review, approval, and successful execution of all structure-based test cases.

4.3 Software Life Cycle Data

The prime objective of the software development processes for the GCS project is to independently (within the constraints of the project) develop two implementations of the GCS and all corresponding life cycle data in compliance with the DO-178B guidelines. The detailed plans for achieving this objective are given in the following documents: Software Verification Plan, Software Configuration Management Plan, and Software Quality Assurance Plan. Each of these planning documents must comply with the DO-178B guidelines and will specify the following information:

· the inputs to that process, including feedback from other processes,

· the integral process activities,

· the availability of tools, plans, methods, and procedures.

The standards for the development products (requirements, design, and source code) and the other project documentation are given in the Software Development Standards. The Software Development Standards also contains a description of tools and methods to be used during development including requirements and design methods and programming language. Other fundamental information about project procedures (such as configuration management and problem reporting) are addressed in the Software Development Standards so that the document can serve as a single handbook for project participants.

Because both GCS implementations are to follow the same development and integral processes, only one set of planning documents (Plan for Software Aspects of Certification (which includes the Software Development Plan), Software Verification Plan, Software Configuration Management Plan, and Software Quality Assurance Plan) will be developed for the project along with a single Software Configuration Index. Most of the remaining life cycle data will be implementation specific. Table 4 shows the responsible party for the life cycle data that corresponds with each process.

Table 4. Organizational Responsibilities for the Software Life Cycle Activities

Software Life Cycle Process Activities
Software Life Cycle Data
Organizational Responsibility

Software Planning
Plan for Software Aspects of Certification

Software Development Standards, including the Software Requirements Standards, Software Design Standards, and the Software Code Standards

Software Accomplishment Summary
Project Leader

Software Development

Transitional Software Requirements
GCS Specification (Software Requirements Data)
System Analyst

Transitional Software Design

Designing the Mercury Implementation
Design Description for Mercury
Mercury Programmer

Designing the Pluto Implementation
Design Description for Pluto
Pluto Programmer

Software Coding

Coding the Mercury Implementation
Source Code for Mercury
Mercury Programmer

Coding the Pluto Implementation
Source Code for Pluto
Pluto Programmer

Integration

Generating Executable Object Code for Mercury
Executable Object Code for Mercury
Mercury Programmer

Generating Executable Object Code for Pluto
Executable Object Code for Pluto
Pluto Programmer

Integral

Software Verification
Software Verification Plan

Software Verification Procedures & Requirements-based Test Cases
Mercury & Pluto Analyst

Verifying the Mercury Implementation
Structure-based Test Cases for Mercury

Software Verification Results for Mercury
Mercury Analyst

Verifying the Pluto Implementation
Structure-based Test Cases for Pluto

Software Verification Results for Pluto
Pluto Analyst

Configuration Management
Software Configuration Management Plan

Software Configuration Index (including the Life Cycle Environment Configuration Index)

Problem Reports for Mercury and Pluto

Support Documentation Change Reports

Software Configuration Management Records
Configuration Manager

Software Quality Assurance
Software Quality Assurance Plan

Software Quality Assurance Records
Software Quality Assurance Representative

5. Project Milestones and Schedule

Within a real software development project the certification authority would be involved in the development activities, at least to the extent of having visibility into the development processes as they progress. Because the GCS project is a research effort, the resources necessary to provide interaction between the project and the certification authority are not available. Further, because this project is not confined by constraints placed on a typical development project that must meet real production deadlines, a hard deadline schedule will not be produced for this project. However, the project does have milestones based on the development processes and a proposed schedule of the major project activities. Table 5 gives the major project milestones and Table 6 gives the project history and proposed schedule.

Because there is no certification liaison process for the GCS project, all project life cycle data as shown in Table 4 will be made available to the certification authority at the completion of all development processes. The SQA representative will conduct a software conformity review upon project completion prior to submission for certification.

Table 5. GCS Project Milestones

Project Phase
Milestones within each Phase

Requirements Phase
· Release version 2.2 of the GCS specification to the programmers

Design Phase
· Complete GCS designs to comply with version 2.2 of the GCS specification

· Conduct Design Reviews

· Complete all modifications to the design identified in Design Reviews

· Initiate development of requirements-based test cases

Code Phase
· Develop source code

· Conduct Code Review

· Complete all modifications to the code identified in Code Review

Integration Phase
· Complete requirements-based testing

· Complete analysis for Multiple Condition/Decision Coverage

· Complete Structure-based testing as needed

Table 6. GCS Project History and Schedule

Historical Events:
Date

Delivery of GCS life cycle data from Research Triangle Institute
5/92

Meeting with the FAA (DeWalt and Saraceni) to determine direction for project
9/20/92

Review of life cycle data (to determine extent of modifications necessary by LaRC)
9/92

Proposed Schedule of Events:

Complete Modification of the GCS specification (release 2.2)
11/93

Complete Modification and Verification of GCS Designs
6/94

Complete Development and Verification of Source Code
10/94

Complete Development of Requirements-based Test Cases
8/94

Complete Requirements-based Testing
12/94

Complete Structure-based Testing
12/94

6. Conclusion

This document gives all project participants and the certification authority an overview of the Guidance and Control Software project and the corresponding software life cycle processes and products. This document is intended to be used in conjunction with the other major planning and standards document (Software Development Standards, Software Verification Plan, Software Configuration Management Plan, and Software Quality Assurance Plan) to provide the basis for all project activities in compliance with DO-178B.

References

[1]
RTCA Special Committee 152. Software Considerations in Airborne Systems and Equipment Certification. Technical Report RTCA/DO-178B, Requirements and Technical Concepts for Aviation, December 1992.

 [2]
George B. Finelli. Results of software error-data experiments. In AIAA/AHS/ASEE Aircraft Design, Systems and Operations Conference, Atlanta, GA, September 1988.

 [3]
Janet R. Dunham and George B. Finelli. Real-Time Software Failure Characterization, COMPASS'90: Proceedings of the Fifth Annual Conference on Computer Assurance, June 1990.

[4]
B. Edward Withers and Bernice Becher. Guidance and Control Software Development Specification, NASA Contractor Report (To be published)

[5]
Neil A. Holmberg, Robert P. Faust, and H. Milton Holt. Viking ‘75 Spacecraft Design and Test Summary, Volume I - Lander Design, NASA Reference Publication 1027, Langley Research Center, 1980.

[6]
RTCA Special Committee 152. Software Considerations in Airborne Systems and Equipment Certification. Technical Report RTCA/DO-178A, Radio Technical Commission for Aeronautics, March 1985.

ii

