Configuration Management Plan

FOR

LASRS++ SIMULATION PROJECTS

Release 1

Version 1

Michael Madden

Unisys Corporation

Hampton, Virginia 23666

December 2, 1996

Table of contents

Section
Page

4

1. Introduction

1.1 Purpose
4

1.2 Scope
4

1.3 Abbreviations and Definitions
5

1.3.1 Definitions
5

1.3.1.1 Configuration Management Terminology
5

1.3.1.2 Project-related Terminology
6

1.3.2 Abbreviations
7

1.4 References
8

2. Management
9

2.1 Organization
9

2.1.1 Project Organization
9

2.1.2 Software Configuration Management Organization
10

2.2 SCM Roles and Responsibilities
11

2.2.1 Activity Definitions
11

2.2.2 Responsibility Definitions
12

2.2.3 Role Definitions
12

2.2.3.1 The Simulation Project CCB
12

2.2.3.1.1 CCB Chairman
12

2.2.3.1.2 CCB Secretary
13

2.2.3.1.3 CCB Librarian
13

2.2.3.2 Simulation Customers
13

2.2.3.3 Architecture Consultant (AC)
13

2.2.3.4 FSSS Management
13

2.2.3.5 SSB Management
13

2.2.3.6 SSB Facilitator
14

2.3 Applicable Policies, Directives, and Procedures
14

3. Activities
15

3.1 Configuration Identification
15

3.1.1 Identifying CIs
15

3.1.1.1 Special Considerations for Base + Variants Simulation Projects.
18

3.1.2 Naming CIs
19

3.1.3 Acquiring CIs
21

3.2 Configuration Control
22

3.2.1 Submittal (Requesting Changes)
25

3.2.2 Review (Evaluating Changes)
25

3.2.3 Approval (Approving or Disapproving Changes)
26

3.2.4 Deferring a CR
27

3.2.5 Appealed (Overruling Rejection or Forwarding)
27

3.2.6 Authorization
27

3.2.7 Execution (Implementing changes)
28

3.2.8 Closure (Closing the CR)
28

3.3 Configuration Status Accounting
28

3.3.1 Configuration Data
28

3.3.2 Configuration Reports
29

3.3.2.1 CR Summary
29

3.3.2.2 Release Notes
29

3.3.2.3 Monthly CR Status
30

3.4 Configuration Audits and Reviews
30

3.4.1 Code Review
30

3.4.2 Functional Configuration Audit (FCA)
30

3.4.3 In-Process Audit
31

3.4.4 Physical Configuration Audit
31

3.5 Interface Control
32

3.5.1 Subcontractor/Vendor Control
32

4. SCM Schedules
33

5. SCM Resources
34

5.1 Software Resources
34

5.2 Hardware Resources
34

5.3 Human Resources
35

6. SCM Plan Maintenance
37

Appendix A Change Request Form Requirements
38

PART A: Submission
38

PART B: Review
38

PART C: Approval, Appeal, and Authorization
39

PART D: Execution
39

PART E: Closure
40

Required Data for Status Transitions.
40

1. Introduction

This document provides the foundation for designing simulation project configuration management plans (CMPs). This plan conforms with the requirements of IEEE STD 828-1990. All project CMPs derived from this plan will also conform with IEEE STD 828-1990.
1.1 Purpose

Each simulation project is unique. A single plan cannot satisfy the needs of all projects without needlessly encumbering many of them. Some projects have special security requirements and/or external agreements which the majority do not. This document provides a CMP template (CMPT) for simulation projects which are constructed using the LaSRS++ framework. It describes the minimal software configuration management (SCM) process which these projects will follow. Each project’s CMP will be an augmentation of this CMP template. This CMPT explicitly identifies process areas that can be tailored for individual projects and usually provides fully usable suggestions for the most common project environments. A Project Leader (PL) can create a CMP which simply refers to particular sections of this plan and write very little original text.

A very important secondary resource for creating project CMPs is IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans. All project CMPs are required to conform with this standard. This CMPT contains all of the required sections in the IEEE standard. In sections where projects may tailor content, the CMPT attempts to give a very simple explanation of the section’s purpose and identifies specific items which a project may want to customize. The project CM planner shall still refer to the standard when making custom changes; the planner will be expected to cover the full range of topics required by the standard.
This CMPT covers only the high level administrative tasks for approving, recording, verifying, and releasing project changes. Simulation Project Configuration Management Procedures supplements the CMPT by addressing the use of SCM software in support of the fundamental SCM process described here; i.e., it discusses the low level activities.

This plan assigns all SCM responsibilities to developers and managers within the Flight Simulation Support Services (FSSS) and Simulation Systems Branch (SSB) organizations. They are the CMPT’s main audience. Simulation customers should also review this plan since it describes submission of change requests (CRs).

1.2 Scope

Although this plan is described as template, many of the processes described within are not suggestions; they are directives. In a small organization that develops multiple projects, it is important to have a common underlying process. A common process reduces personnel training while increasing flexibility in personnel management. Any developer should be able to move to a new project without the need to learn a new process. As stated in the purpose, this plan does not provide blanket coverage for all projects. Some tailoring has to be done. But the items to be tailored could be described as cosmetic rather than foundational. In this CMPT, directives are differentiated from suggestions explicitly in the text. Should it become ambiguous to the reader whether a described process is a directive or a suggestion, the following rules apply. Directives contain the words “shall” and “will”. Suggestions contain the words “should” and “may”.

This plan is activated upon approval of FSSS and SSB management. Both directives and suggestions in this plan are pre-approved. This does not imply that project CMPs are automatically approved if they do not deviate from this plan. Project plans still require FSSS and SSB management approval (see section 4.0). It merely implies that the managers agree that the processes contained in this document are effective for management of project configurations. How they are combined for a specific project can be contested.

The CMPT does not apply to the LaSRS++ framework. The Configuration Management Plan for the Langley Standard Real-Time Simulation in C++ (LaSRS++) describes the configuration management activities for LaSRS++. The CMPT does not govern configuration management of the real-time supervisor software; it is also controlled under the LaSRS++ CMP. This CMPT does not apply to configuration management of COTS software and other software development tools not exclusively used by a simulation project. The Simulation Systems Configuration Management Plan covers these items. The simulation systems CMP addresses changes which affect both hardware and software. The simulation systems CMP describes the approval process for Simulation Project Requests (SPRs). However, a project CMP will control changes to its SPR once the SPR is approved. CM activities in the simulation systems CMP take priority over those in this CMPT or any project CMP. Should these CMPs conflict; this CMPT or the project CMP must be modified to accommodate the simulation systems CMP.

Following the introduction, this plan is organized into several sections:

Section 2
describes the configuration management organization and how it maps to the FSSS and SSB organizations. It also assigns SCM responsibilities within these organizations.

Section 3
describes the CM activities including identification, control, status accounting, and audits.

Section 4
describe the schedule for CM milestones.

Section 5
describes the CM resources (tools, techniques, methodologies, and man-power) needed to provide an effective CM environment.

Section 6
describes the maintenance of the CMP, to ensure that it is kept current, and it describes the CM maintenance activities that shall occur, and how often they shall be performed.

Appendix A
Provides requirements for configuration control documents specified in this plan.

1.3 Abbreviations and Definitions

This section defines terms and abbreviations used in the CMPT. Project CMPs will augment this section with any project specific terms or abbreviations which they use.

1.3.1 Definitions

1.3.1.1 Configuration Management Terminology

Definitions for configuration management terminology can be found in the publication ANSI/IEEE Std 610.12-1990 IEEE Standard Glossary of Software Engineering Terminology. However, some of the more frequently used terminology in this document has been defined below for convenience.

audit - An independent examination of a work product or set of work products to assess compliance with specifications, standards, contractual agreements, or other criteria. [IEEE-STD-610]

baseline - (1) A specification or product that has been formally reviewed and agreed upon, that thereafter serves as the basis for further development, and that can be changed only through formal change control procedures. (2) A configuration identification document or a set of such documents formally designated and fixed at a specific time during a configuration item’s lifecycle. Baselines, plus approved changes to those baselines, constitute the current configuration identification. For configuration management there are three baselines as follows:

a) Functional baseline. The initial approved functional configuration.

b) Allocated baseline. The initial approved allocated configuration.

c) Product baseline. The initial approved or conditionally approved product configuration identification. [IEEE-STD-610]

configuration - (1) The arrangement of a computer system or component as defined by the number, nature, and interconnections of its constituent parts. (2) In configuration management, the functional and physical characteristics of hardware or software as set forth in technical documentation or achieved in a product. [IEEE-STD-610]

configuration control - An element of configuration management, consisting of the evaluation, coordination, approval or disapproval, and implementation of changes to configuration items after formal establishment of their configuration identification. [IEEE-STD-610]

configuration control board - A group of people responsible for evaluating and approving or disapproving proposed changes to configuration items, and for ensuring implementation of the approved changes. [IEEE-STD-610]

configuration identification - (1) An element of configuration management, consisting of selecting the configuration items for a system and recording their functional and physical characteristics in technical documentation. (2) The current approved technical documentation for a configuration item as set forth in specifications, drawings, associated lists, and documents referenced therein. [IEEE-STD-610]

configuration item (CI) - An aggregation of hardware, software or both, that is designated for configuration management and treated as a single entity in the configuration management process. [IEEE-STD-610]

configuration management (CM) - A discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of a configuration item, control changes to those characteristics, record and report change processing and implementation status, and verify compliance with specified requirements. [IEEE-STD-610]

configuration status accounting - An element of configuration management, consisting of the recording and reporting of information needed to manage a configuration effectively. This information includes a listing of the approved configuration identification, the status of proposed changes to the configuration, and the implementation status of approved changes. [IEEE-STD-610]

document - (1) A medium, and the information recorded on it, that generally has permanence and can be read by a person or a machine. Examples in software engineering include project plans, specifications, test plans, user manuals. (2) To create a document as in (1). (3) To add comments to a computer program. [IEEE-STD-610]

documentation - (1) A collection of documents on a given subject. (2) any written or pictorial information describing, defining, specifying, reporting, or certifying activities, requirements, procedures, or results. (3) The process of generating or revising a document. (4) The management of documents, including identification, acquisition, processing, storage, and dissemination. [IEEE-STD-610]

hardware - Physical equipment used to process, store, or transmit computer programs or data. [IEEE-STD-610]

interface - (1) A shared boundary across which information is passed. (2) A hardware or software component that connects two or more other components for the purpose of passing information from one to the other. (3) To connect two or more components for the purpose of passing information from one to the other. (4) To serve as a connecting or connected component as in (2). [IEEE-STD-610]

simulation - (1) A model that behaves or operates like a given system when provided a set of controlled inputs. (2) The process of developing or using a model as in (1). [IEEE-STD-610]

simulator - A device, computer program, or system that behaves or operates like a given system when provided a set of controlled inputs. [IEEE-STD-610]

software - Computer programs, procedures, and possibly associated documentation and data pertaining to the operation of a computer system. [IEEE-STD-610]

software life cycle - The period of time that begins when a software product is conceived and ends when the software is no longer available for use. The software life cycle typically includes a concept phase, requirements phase, design phase, implementation phase, test phase, installation and checkout phase, and sometimes, retirement phase. [IEEE-STD-610]

system - A collection of components organized to accomplish a specific function or set of functions. [IEEE-STD-610]

traceability - (1) The degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or master-subordinate relationship to one another; for example, the degree to which the requirements and design of a given software component match. (2) The degree to which each element in a software development product establishes its reason for existing; for example, the degree to which each element in a bubble chart references the requirement that it satisfies. [IEEE-STD-610]

1.3.1.2 Project-related Terminology

batch - A environment that does not operate in hard real-time.

checkout - Real-time operation for the purpose of system testing.

deviation - A requirements modification necessitated by resource or technical constraints.

Facilitator - An Simulation Systems Branch (SSB) civil servant chosen to represent the interests of NASA in the project’s development.
library - An organized file archive or loadable image containing a collection of software functions.

makefile - A script which tells the UNIX program "make" how to build a particular computer program or set of programs. A makefile contains variable assignments and rules of the form

 target: inputs

 commands

which say if any of the files in "inputs" has been modified more recently than file "target" (or if the target does not exist) then execute "commands", which will normally build "target" from "inputs".

Principal Investigator - One researcher who represents the interests of the research community for a given project, i.e. each project has its own Principal Investigator. Usually, the Principal Investigator and the Facilitator are not the same person.
real-time - of or pertaining to a mode of computer operation in which the computer collects data, computes with it, and uses the results to control a process as it happens. [Webster’s Dictionary]

researcher - An individual who defines and examines the results of a simulation experiment.

session - A three-hour period for which real-time resources have been scheduled.

Simulation Project Request (SPR) - A document proposing the creation of a new simulation project. This document contains the project’s functional requirements and explicitly allocates those functions to all organizations which are to be involved in the project.

user - The individual or group who shall use the system for its intended operational use when it is deployed in its environment.

waiver - Permission to dismiss a project requirement; usually granted when resource or technical limitations prevent successful implementation.

1.3.2 Abbreviations

AC
Architecture Consultant

CCB
Configuration Control Board

CI
Configuration Item

CGI
Common Gateway Interface

CM
Configuration Management

CMP
Configuration Management Plan

CMPT
Configuration Management Plan Template

COTS Commercial-Off-The-Shelf

CR
Change Request

DMSS
Distributed Mass Storage System

FCA
Functional Configuration Audit

FSSS
Flight Simulation Support Services Contract

GUI
Graphical User Interface

IEEE
The Institute of Electrical and Electronics Engineers

ISSD
Information Systems and Services Division

LaRC
Langley Research Center

LAT
LaSRS++ Architecture Team

LaSRS++
Langley Standard Real-time Simulation in C++

NASA
National Aeronautics and Space Administration

PCA
Physical Configuration Audit

PL
Project Leader

RTSS
Real-Time Support Services

SCM
Software Configuration Management

SGI
Silicon Graphics Incorporated

SMD
Software Management Documents

SPR
Simulation Project Request

SSB
Simulation Systems Branch

STD
Standard

1.4 References

1. IEEE Std 828-1990, “IEEE Standard for Software Configuration Management Plans”

2. IEEE Std 1042-1987, “IEEE Guide to Software Configuration Management”

3. IEEE Std 610.12-1990, “IEEE Standard Glossary of Software Engineering Terminology”

4. Buckley, Fletcher J. Implementing Configuration Management. IEEE Press, New York; 1993.

5. Bersoff, Edward H.; Henderson, Vilas D.; Siegel, Stanley G. Software Configuration Management: An Investment in Product Integrity. Prentice Hall, Englewood Cliffs; 1980.

6. McConnell, Steve. Code Complete. Microsoft Press, Redmond; 1993.

7. LaRC Program Assurance Manual, LHB 5300.1, Program Assurance Instruction (PAI) 5310-3.4

8. Unisys Corporation, “LaSRS++ Programmer’s Guide”, internal document.

9. Unisys Corporation, “LaSRS++ Software Development Plan”, internal document.

10. Unisys Corporation, “Configuration Management Plan for the Langley Real-Time Simulation in C++ (LASRS++)”, internal document.

11. Unisys Corporation, “Simulation Project Configuration Management Procedures”, internal document.

12. “Simulation Systems Configuration Management Plan”

2. Management

2.1 Organization

2.1.1 Project Organization

[image: image1.wmf]Flight Simulation

Support Services

Research

Community

NASA

Architecture

LaSRS++

Team

LaSRS++

Project

Leader

Simulation

Project

Leader

FSSS

Project

Manager

FSSS

Program

Manager

Simulation Systems

Branch

Branch Head

Assistant

Branch Head

Simulation

Project

Developers

Facilitator

Figure 1 LaSRS++ Project Organization

Figure 1 illustrates the basic organizational structure for all simulation projects. The organizations identified here have active involvement in all simulation projects and are the only organizations upon which this plan places primary configuration management responsibility. Two organizations play major roles in the development of simulation projects. The Simulation Systems Branch (SSB) is responsible for flight simulation at LaRC. Flight Simulation Support Services (FSSS) contractors develop the research simulations. Some projects may support LaRC-wide projects or cooperative projects with the aviation industry or the military. These projects will have additional organizations involved. Project CMPs must identify those organizations in this section and explain any role they will assume in the SCM process.

A number of FSSS individuals contribute to the simulation project’s development. FSSS management, which consists of the FSSS Program Manager and FSSS Project Manager, allocates resources to simulation projects and oversees that projects meet customer needs. The FSSS Project Manager creates the project development team. He selects the Project Leader (PL) and assigns developers to the project. The PL heads each simulation project. The PL has primary responsibility for the project’s development and is the CCB Chairman. The project developers create the simulation software; they are also members of the project CCB.

The LaSRS++ Architecture Team (LAT) guides the evolution of the LaSRS++ project. LaSRS++ is an object-oriented framework designed for rapid development of simulation projects. LAT members are FSSS simulation developers with experience creating object-oriented software. Members are chosen by the LaSRS++ Project Leader. More information about the group and its activities can be found in the Configuration Management Plan for the Langley Standard Real-Time Simulation in C++ (LaSRS++) and the LaSRS++ Software Development Plan. The FSSS Project Manager assigns a LAT member to each simulation project as an Architecture Consultant (AC). The AC helps the simulation project achieve efficient use of the LaSRS++ framework and identifies project-specific designs which could be migrated to the framework. The AC is most active during the design process; they do not actively participate in the other stages of development (unless they are also an assigned developer to the project).

The NASA organizations most involved in simulation projects are the Simulation Systems Branch (SSB) and the “research community”. SSB establishes and monitors the simulation projects. SSB is managed by a branch head and an assistant branch head. SSB is supported by the FSSS contract. SSB must authorize all labor and expenditures related to a simulation project. SSB management selects an individual, called a “Facilitator”, to be a liaison between the simulation developers and the simulation customers. The Facilitator is a member of the Project CCB. The Facilitator performs the functional configuration audits (FCA) (see section 3.4.2) and approves the physical configuration audit (PCA) (see section 3.4.4). The “research community” encompasses all NASA civil servants that use the simulation facilities for research purposes. These organizations are direct customers of simulation projects; thus, they have an interest in its evolution and success.

2.1.2 Software Configuration Management Organization

[image: image2.wmf]Simulation Systems CCB

•

Approves SPRs

•

Controls COTS changes

•

Approves changes affecting both

 hardware and software

SSB

Management

FSSS

Representative(s)

SCOMAC

Representative(s)

SSB

Personnel

LaSRS++ CCB

Controls Changes to:

•

LaSRS++ Framework

•

Real-time Supervisor

•

Software Development Plan

Architecture

LaSRS++

Team

LaSRS++

Project

Leader

RTSS

Project

Leader

Project CCBs

Controls changes to project

 specific software products.

Simulation

Project

Developers

Simulation

Project

Leader

SSB

Facilitator

Figure 2 SCM Organization

Figure 2 displays the minimum SCM organization involved in simulation projects. The organization is a hierarchy of configuration control boards (CCBs). The Simulation Systems CCB controls changes to COTS software used for all simulation development; it rules on change requests which affect both simulation software and hardware and approves simulation project requests (SPRs). The SSB Branch Head or his designee chairs the Simulation Systems CCB. The Simulation Systems Configuration Management Plan defines the Simulation Systems CCB and its activities. The LaSRS++ CCB governs the development of the LaSRS++ application framework upon which all simulations are built. It actively monitors simulation projects for framework enhancements. The LaSRS++ Project Leader chairs the LaSRS++ CCB. The Configuration Management Plan for the Langley Standard Real-Time Simulation in C++ (LaSRS++) defines the LaSRS++ CCB and its activities. The Project CCB controls project software, most of which will be built on top of LaSRS++. The Project Leader is the CCB Chairman. The remainder of this CMPT describes the membership and basic activities of Project CCBs. If a project must interact with outside CM organizations, the project CMP will acknowledge them in this section. The project CMP will summarize their scope of authority and refer the reader to documents which detail their membership and activities.

2.2 SCM Roles and Responsibilities

Project success relies on good communication between FSSS contractors and NASA. This plan facilitates efficient communication required to approve and implement changes by clearly defining the role each organization plays in the CM process. Table 1 provides a visual matrix of the responsibilities that each role is assigned for a given activity. A description of each activity, responsibility, and role follows the matrix. Project CMPs which add SCM activities or roles will summarize them in this section using the same matrix/description format. The project CMP will assign its new activities to one or more roles with an elaboration of the role’s responsibilities within the activity. The project CMP will assign new roles to members of the project organization it presents in section 2.1.1.

Table 1 Responsibility Assignments for Project SCM Activities

Roles 

Activities 
CCB Chairman
Project CCB
SSB Facilitator
FSSS Management
SSB Management
Architecture

Consultant
Simulation Customers

Change Request
Submit

Review

Approve
Submit

Review
Submit

Review

Submit

Appeal
Submit

Appeal
Submit

Review
Submit

Change Implementation
Perform

Review

Approve
Perform

Review
Review
Assign
Authorize

Change Control
Enforce

Perform
Perform

Enforce

Configuration Identification
Perform

Approve
Perform

Documentation
Perform

Approve

Maintain
Perform

Maintain

Status Accounting
Perform
Perform

Audits & Reviews
Perform

Approve
Perform
Perform

Approve

Perform

Approve

2.2.1 Activity Definitions

Change Requests - CRs represent either the identification of CI defects or a request for enhancement of a configuration item. CRs for simulation projects are written (submitted), reviewed, approved, and sometimes appealed (see section 3.2 and Appendix A).

Change Implementation - Once a CR is approved and SSB has authorized work on behalf of it, implementation of the requested change is assigned to a group or individual (see section 3.2.6 and the LaSRS++ Software Development Plan).

Change Control - Changes cannot be introduced without approval. Each change will be screened to verify that it implements only an approved CR (see section 3.2.6).

Configuration Identification - Items (software, documentation, and resources) under control of the plan must be identified and named (see section 3.1).

Documentation - Documentation encompasses any text generated in support of a simulation project. It includes but is not limited to design documents, source code documentation, test reports, CRs, status accounting reports, and audit reports.

Status Accounting - Status accounting gathers and reports information concerning the tracking of CRs, change implementation, and CI contents (see section 3.3).

Audits & Reviews - Audits and reviews verify that LaSRS++ CIs contain all and only all changes from closed CRs, that they adhere to LaSRS++ standards, that the framework matches its documentation, and that any distribution of the framework is complete (see section 3.4).

2.2.2 Responsibility Definitions

Approve - The organization/individual approves requests for an activity and/or its results. More than one approval may be needed. This responsibility may be delegated temporarily or permanently to another individual within the same project organization.

Assign - The organization/individual is responsible for assigning the activity to a developer. This responsibility may be delegated temporarily or permanently to another individual within the same project organization.

Authorize - The organization/individual authorizes resource expenditures for the activity. This responsibility may be delegated temporarily or permanently to another individual within the same project organization.

Enforce - The organization/individual is responsible for exacting compliance with all policies regarding the activity.

Maintain - The organization is responsible for upkeep of products associated with the activity.

Perform - The organization is responsible for carrying out the activity.

Review - The organization is responsible for examining products required by an activity for completeness, correctness, and clarity. This organization may also be responsible for identifying missing information.

Submit - The organization/individual can submit a CR.

2.2.3 Role Definitions

2.2.3.1 The Simulation Project CCB

The configuration control board (CCB) for a simulation project has primary responsibility for reviewing, approving, and assigning changes to the project’s requirements and products. The Project CCB shall include the Project Leader (PL), the SSB Facilitator, and all developers assigned to the project. The PL is the CCB Chairman. The FSSS Project Manager selects the PL. The FSSS Project Manager also assigns the developers to the project. SSB Management selects the Facilitator. One FSSS CCB member administers the CR database and is given the role of CCB Secretary. One FSSS CCB member administers the simulation project’s CI repositories; he is given the title of CCB Librarian. All CCB members are technical analysts who review change requests. CCB members perform the following CM activities:

· Implement approved changes.

· Review approved changes. According to the LaSRS++ Software Development Plan, all class designs must undergo review and all source code changes are subject to a code walk-through. During these reviews, CCB members shall verify that only the requested change is being made and that it has been implemented according to LaSRS++ standards.

· Create or amend required documents.

2.2.3.1.1 CCB Chairman

The CCB Chairman has the following responsibilities:

· Authority to approve change requests.

· Determines when sufficient information is available to make the approval decision.

· Decides whether a CR review requires a formal meeting of the CCB or an informal discussion with some CCB members.

· Selects the CCB Secretary and the CCB Librarian.

· Approves code reviews and the PCA (see section 3.4).

2.2.3.1.2 CCB Secretary

 The CCB Secretary has the following responsibilities:

· Administer the CR database, performing periodic maintenance and coordinating new customizations.

· Verify that all CRs are complete and properly submitted before promoting them to review (see section 3.2).

· Deliver implementation assignments for approved CRs (see section 3.2.6).

· Verify that CRs are complete with proper authorization before closing them (see section 3.2.8).

· Produce all configuration status accounting reports (see section 3.4).

· Prepares agenda and records minutes for the formal CCB meetings.

The Configuration Management Procedures for Simulation Projects further elaborates the responsibilities of the CCB Secretary.
2.2.3.1.3 CCB Librarian

The CCB Librarian has the following responsibilities:

· Administer the project’s CI repositories, performing periodic maintenance and coordinating minor customizations.

· Give CR implementors write access to the repository.

· Ensures that only reviewed and tested changes become visible to other simulation developers (see section 3.2.8).

· Define each new release of a project CI (see section 3.1.2).

· Create repositories for new CIs (see section 3.1.3).

The Configuration Management Procedures for Simulation Projects further elaborates the responsibilities of the CCB Librarian.

2.2.3.2 Simulation Customers

A simulation customer is anyone represented by the organizations in Figure 1 who is not directly involved in the development of the project. Usually, these are members of the “research community”. The simulation customer can freely submit CRs to the Project CCB. Simulation customers are also invited to participate in the project FCAs (see section 3.4.2). One simulation customer is designated as the ‘Principal Investigator’. The Principal Investigator has the authority to approve the FCA (i.e., accept the simulation product) on behalf of all customers.

2.2.3.3 Architecture Consultant (AC)

The AC, a LAT member, attends all design reviews and examines CRs which add enhancements to a project. The AC aids simulation projects in maximizing reuse of the LaSRS++ framework. The AC identifies new simulation features which would benefit the LaSRS++ framework. If the AC determines that a project feature shall be moved into the framework, he will submit a CR to the LaSRS++ CCB. If the CR is approved, authority for the identified feature will be handed to the LaSRS++ CCB and its physical storage (if any) will be moved into a LaSRS++ CI repository.

2.2.3.4 FSSS Management

The FSSS Management consists of the FSSS Program Manager and the FSSS Project Manger. They can submit CRs to the project’s CCB. They assist the CCB in enforcing change control procedures through their support of the CM process. They resolve appeals on CRs which were submitted by FSSS contractors (see section 3.2.5). FSSS Management also approves in-process audits (see section 3.4.3).

2.2.3.5 SSB Management

SSB Management consists of the Branch Head and Assistant Branch Head. SSB Management can submit CRs to the project’s CCB. SSB Management resolves appeals on CRs submitted by simulation customers (see section 3.2.5). SSB Management authorizes work done on behalf of any approved CR (see section 3.2.6); this authority can be shared with no more than two SSB civil servants, for all projects. SSB management approves PCAs for products delivered to a third party (see section 3.4.4). SSB management can initiate an in-process audit and approve the results (see section 3.4.3).

2.2.3.6 SSB Facilitator

SSB Management selects a ‘Facilitator’ for each project. The SSB Facilitator is a liaison between the development group and the simulation customers. They act on behalf of the customers’ interests. This is most apparent in their responsibility to conduct the functional configuration audit (FCA) of the simulation product. The FCA embodies the process of accepting the simulation product for production. The Facilitator also represents the simulation customers on the CCB.

2.3 Applicable Policies, Directives, and Procedures

In addition to the CM policies detailed in this document, the following external standards and procedures apply for the duration of the project:

· The Simulation Project Configuration Management Procedures details how SCM software is used in support of this plan.

· The LaSRS++ Programmer’s Guide, which specifies stylistic and programming conventions, shall be followed for all source code written as part of a LaSRS++ CI. These guidelines include but are not restricted to source code file names, variable names, structured code formatting, and class design restrictions. The guide's purpose is to ensure uniform looking code that is readable and avoids dangerous language idioms. Code changes shall not be accepted unless they conform with this document.

· The LaSRS++ Software Development Plan discusses the software lifecycle and proper testing procedures. All directives in this plan must be adhered to before a code change is accepted.

If the project has any other documented policies that affect SCM activities (e.g., security plans), they will be listed here.

3. Activities

3.1 Configuration Identification

A completed software product will include a large variety of controllable components: requirements documents, design documents and drawings, source code, makefiles, test suites, test plans, technical descriptions (a.k.a. source code documentation), end-user documentation, input data (e.g. aerodynamic data), etc. Moreover, each of these items matures at different stages of the software’s development cycle. Configuration identification takes these considerations and produces a configuration control “map” for the software’s development. This map:

1. breaks the software product into smaller, more manageable pieces which usually have unique configuration management needs. These pieces are called configuration items (CIs).

2. defines the control points (a.k.a. baselines, updates, or versions) for these CIs. Baselines are defined by their contents. During the initial stages of a software product’s development, each successive baseline will contain progressively more types of controllable components. Once a software product reaches production, the types of controllable components are usually frozen and each baseline represents a set of changes or additions to the already existing types.

3. provides a labeling scheme which links together the contents of a baseline.

4. addresses how CIs are to be acquired and placed under control.

The following configuration identification scheme requires that all components of a project CI be placed under the control of SCM software; therefore, all CI components must exist in electronic form. This makes configuration identification easier. Traditionally, drawings, documents, and source code were all handled and labeled differently because each was created and controlled as different media. The uniform storage and control of all CI components under SCM software allows for the application of identical controls and labeling.

3.1.1 Identifying CIs

CI identification must be tailored for each simulation project. Most simulation projects will decompose into only one CI. The number of CIs identified should reflect project lifespan and complexity. A CI can represent a distinct product of the project. For example, a project may determine that the visual displays and the aircraft model should be separated into two CIs. A CI could also represent a long-lived variant of another established CI. Some simulation projects build a base aircraft model and then spawn variants to support the work of individual researchers. Each variant is issued as its own project. Rather than control the variants under individual CMPs. It is more efficient to place all of these related projects under one CMP which treats each variant and the base as separate CIs. In this latter case, the CM plan will contain provisions for moving changes from a variant into the base or into another variant (see section 3.1.1.1).

The baseline progression of all project CIs will derive from the template described in Figure 3. Projects are free to elaborate on the basic baseline system presented below; but they cannot subtract or rearrange the baselines presented. Projects may create new baseline definitions to satisfy security, safety, or portability requirements. All simulation project CIs will have at least five baselines: functional, design, batch, checkout, and production. Table 2 lists the contents of the major baselines; the contents are cumulative; i.e., the contents of a given baseline are those listed beside it plus those of the baselines which came before it. The template scheme also provides two optional baselines common to some simulation projects: historical and run-time. Figure 3 illustrates the relationships between these major baselines and the two optional baselines. The following paragraphs discuss the depicted baselines in more detail.

Baseline
Contents

Functional
Simulation Project Requirements

Simulation Project CMP

Designed
Design Documentation

Unified Method Diagrams

Batch
Source Code

Makefile

Unit Test Suites

Checkout
Integration Test Suites

Production
Real-time Test Suites

User documentation (if required).

Table 2 Simulation Project Baseline Contents

Figure 3 Simulation Project Baselines

The functional baseline represents the project’s requirements and processes. All documents containing project requirements or describing the project-unique development processes are labeled as functional baseline components. At a minimum, the functional baseline is embodied in the Simulation Project Request (SPR) and the project’s CMP. A new functional baseline is established whenever a change in the project’s requirements or development process occurs. These changes generally concentrate at the start of the project but can occur anytime within the project’s lifespan. They include (but are not limited to):

1. Modification or addition of a project-unique development process. In addition to the project CMP, a project may have tailored security plans, test plans, and operation procedures.

2. Granting a deviation or waiver. During the course of analysis, design, or implementation, the development group may determine that a requirement cannot be met as stated. If a slight variation of the requirement can be met, then a deviation is granted. If the requirement cannot be met at all, then a waiver must be granted. A note describing this action is added to the appropriate requirements document(s).

3. The customer modifies a requirement. A note of this modification is added to the appropriate requirements document. These customer modifications usually take the form of enhancement requests.

4. A new feature is requested and approved. New features represent new requirements. The documents describing the new feature are added to the functional baseline.

Design may proceed once the functional baseline is established. The design baseline includes the complete set of design documents and Unified Method diagrams upon which the source code development is based. Good object-oriented analysis prioritizes requirements and creates an incremental build strategy for the project. The first design baseline will describe the incremental build which will support the first experiment. This baseline is established when all the relevant designs have been reviewed and approved by the Project CCB. Subsequent design baselines contain design additions or modifications which have been reviewed and approved. These changes include:

1. Designs describing features for a subsequent incremental build.

2. Design changes in response to requirements changes.

3. Design modifications which evolve from implementation experience. The developer may discover that the original design is inefficient or inflexible. He may propose a design change (using a CR). If approved, the design document is updated and attached to the baseline.

The batch baseline contains code which is ready for integration testing in a non-real-time environment (a.k.a. “batch” testing). All new development and unit testing occurs prior to establishment of a batch baseline. Source code does not come under formal CM control until it associated with a batch baseline. The batch baseline includes all the unit test suites created during new development. The first batch baseline does not have to represent the first incremental build. It can be any combination of unit-tested subsystems that have undergone a code review (see section 3.4.1) and are ready for integration. Subsequent batch baselines are established with the addition of new unit-tested subsystems or major modifications to existing subsystems. Major modifications need regression testing using the appropriate unit and integration test suites. Identifying a major modification is subjective; the Project CCB categorizes the size of a change during the code review (see section 3.4.1).

 The checkout baseline is established when a batch baseline is ready for testing and acceptance in the real-time environment (a.k.a. system testing). It includes all the integration test suites used in verifying the batch baselines. Batch and checkout baselines do not have a one-to-one correspondence. The first checkout baseline is usually not derived from the first batch baseline. Many batch baselines will not be promoted to a checkout baseline; they will only serve as an incremental configuration between checkout baselines. The Project Leader determines whether a batch baseline is promoted to a checkout baseline. Checkout baselines may also be established when minor modifications are made to source code attached to a checkout or production baseline. Minor modifications have a limited scope that never extends beyond one class; usually the change affects only one method. The Project CCB determines whether a change is minor. The Project CCB is cautioned against creating checkout baselines in this manor. It is not always possible to accurately determine the full scope of a change, no matter how small it is. Direct promotion to checkout bypasses regression testing (with unit and integration test suites) that could uncover unforeseen side effects. This flexibility, however, allows Project Leaders to balance risk with schedule.

A production baseline is created after a checkout baseline undergoes a functional configuration audit (FCA) (see section 3.4.2). The FCA embodies the process of accepting the checkout baseline for production. The relationship between checkout and production baselines is identical to the relationship between batch and checkout baselines; i.e., there is no one-to-one correspondence. Production baselines strictly represent software configurations intended to run an experiment. The first production baseline is the first incremental build required to run the first experiment. The production baseline includes all the real-time tests suites used in the validation of the checkout baseline and any required documentation.

A historical baseline is created when a research experiment requires a small one-time change to a past production baseline. The historical baseline will either be a “dead end” or will eventually be folded into mainline development. Except for configuration labeling, a historical baseline will be treated as a production baseline; it is created after an FCA of the required modifications. Under no circumstances does a historical baseline become a more involved development effort. Research requiring major modifications or multiple incremental changes to a past production baseline should be categorized as a variant project of the base simulation project.

Run-time baselines contain files created and/or modified during a production real-time session. Generally, these revisions are either field changes or run results. Field changes are simulation software modifications made during a production real-time session. Run results include any data logged during the session. The run-time baseline is always based on the production baseline but remains isolated from it. A project must decide whether its configuration processes will allow field changes to aircraft source files. (Field changes to the LaSRS++ framework are covered in the LaSRS++ CMP.) Field changes allow the console operator to add minor enhancements or fix obvious defects so that a production real-time session can continue. The disadvantages of field changes are that they are unauthorized, not reviewed, and untested. They also complicate reconstruction of the production session at a later date. From a configuration management perspective, their disadvantages outweigh the one advantage. It is highly recommended that they not be allowed except in the most dire emergencies. Field changes will be assumed to be “dead-ends”. Neither the console operator, the project’s Facilitator, nor the researcher will be guaranteed that field changes will be folded back into a future production baseline. The field change will have to go through the same approval and review process as ordinary changes. Even if the CCB decides to approve the change, they can reject the field implementation and require a redesign. If the project must also have the ability to reconstruct sessions, field changes in the run-time baselines will be maintained for that purpose only. Before a field change can be made, the console operator must note the impending change in the console log, and the note must be signed by either the researcher or the Facilitator. One can still place a run-time baseline in their CMP but disallow field changes. The run-time baseline is then used only to control logged data. Unless different runs overwrite the data files, this control activity, in effect, uses the CM software as a convenient data archiver. Data files tend to consume large amounts of disk space; therefore, insufficient disk space may eliminate this control option.

The baseline progression presented here does not imply a waterfall development cycle. This is most evident in the many paths development can take as it progresses to and from production baselines. For example, a change made to a production baseline can become either a batch or checkout baseline depending on its scope. A change branching off of a checkout baseline can revert back to a batch baseline. Also, any given baseline does not need to be fully established before work on its successor can begin. New development and unit testing can be done for technical demonstration before the design baseline is established. Not all subsystems need be complete before the first checkout baseline is established. The only hard rules of baseline progression are as follows:

· No design work will begin until the first functional baseline is established.

· The first instance of a baseline cannot be established until its predecessor has been established. However, work leading toward the creation of a baseline may begin before the predecessor baseline has been established (except as noted elsewhere). For example, the first batch baseline cannot be established until the first design baseline is established. Coding and unit testing may begin before establishing the design baseline, but no integration testing, the “signature” of a batch baseline, will begin until the first design baseline is established.

· The first session baseline must contain the minimum subsystems required to run a researcher experiment, i.e. the first incremental build.

3.1.1.1 Special Considerations for Base + Variants Simulation Projects.

For simulation projects where some CIs represent variants of a base simulation, the CM plan must account for the merging of changes from one variant to the base or to another variant. Cross CI changes must be easily identifiable. This can only be guaranteed when each developer implements a single project requirement or a single change request in an isolated workspace, a.k.a. a developer baseline. (In truth, this strategy will actually spread the whole “change” over a small number of developer baselines. One developer baseline contains the bulk of the “change” as originally implemented; the rest contain corrections to the “change” as defects are uncovered. However, the original change and all of its corrections should be easily identifiable using this method.) When a change is merged from one CI to another, the merge shall use only the original developer baselines. Why? The merge feature in most CM packages is overly intelligent for this purpose. If you merge from a session baseline and discard all the other unwanted changes, then the next time you merge the two CIs using their session baselines, the CM system will automatically re-discard those changes by picking, as a common base version, the configuration that resulted from the last merge. If the developer now wanted to include one of those discarded changes, the developer would have to manually select the correct common base version that would revive the desired change. The resulting configuration of a cross CI merge will be tagged as a batch baseline. It will not automatically be accepted as a session or checkout baseline; it must undergo the full battery of tests to assure that the merge correctly captured the change and that the change does not conflict with other changes in the target CI.

3.1.2 Naming CIs

The CI labeling conventions rely on the final baseline system created for the project’s configuration management plan. CI release labels contain enough information to relate labeled objects with a particular baseline of a particular CI in a particular project. The release label is attached to all the components of the CI and can be the sole indicator of the CI to which a particular component belongs. (How this is done is implementation specific and is discussed in the Configuration Management Procedures for Simulation Projects.) This section provides a CI naming convention for the template baseline system presented in section 3.1.1 as an example. Project CMPs, which contain additional baselines, will create labeling conventions for those baselines in this section. The project-specific labeling scheme shall be consistent with this template system.

The Simulation Systems CCB assigns a “project number” to each project it approves (see the Simulation Systems Configuration Management Plan). A release label will use the project number to relate a CI baseline release to a particular project. A project’s CMP assigns a unique alphanumeric code to each CI it controls (see section 3.1.1). A release label will use this code to identify the CI to which it refers. Lastly, the CI release label will contain a character code that identifies the current baseline progression. Table 3 contains a matrix for forming release labels. In the matrix, literal text is enclosed in quotes. The label content descriptions follow the table.

Table 3 Baseline Naming

Baseline
Version Label Contents

Functional

‘FUNC’

Revision

Design

‘DSGN’

Number

Batch

Session

Checkout

Batch

Checkout
Project
‘_’
CI Code
‘_’
Revision
‘.’
Revision
‘.’
Revision

Session
Number

Number

Number

Number

Maintenance

Historical

Session

Letter

Run-time

Date Stamp

Project Number
The Simulation Systems CCB assigns a project number to each simulation project once the project is approved. Under CMPs covering related projects where each project is treated as its own CI, this number is replaced by the name of the aircraft.

CI Code
A project must assign, to each CI, an uppercase alphanumeric code no longer than four characters. For CMPs that control related projects as CIs, this code will be the same as the project numbers. The CI code is optional for CMPs that control only one CI.

Revision

Number
Functional and Design baselines are given an integer revision number. The initial baseline is given a revision number of one. Each subsequent change to these baselines increases the revision number.

Session Revision

Number
This integer increases with the establishment of each new session baseline. It is initialized to zero indicating that the first session baseline is still under construction.

Checkout Revision

Number
This integer increases with the establishment of each new checkout baseline. The integer reverts to zero whenever the session revision number is increased. The number is initially zero to indicate that the first checkout baseline is still under construction.

Batch Revision

Number
This integer increases with the establishment of each new batch baseline. The integer reverts to zero whenever the session or checkout revision numbers are increased. The number is initially set to zero indicating that the first batch baseline is still under construction.

Historical

Session Letter
Each historical baseline is identified by this session letter. The session revision number of a historical baseline remains constant as a reminder of the production baseline from which it originated. The historical session letter then increases with each new historical baseline that emanates from the same production baseline. The letter is lowercase and is initialized to ‘a’. (Since a historical baseline is always derived from a production baseline, the batch and checkout revision numbers would always be zero; therefore, it is not necessary to record them.)

Date Stamp
Run-time baselines are tagged with a time stamp of the form MMDDYYYY-HH. MMDDYYYY is the month-day-year on which the session took place. HH is the military hour in which the session began. For example, the run-time baseline representing changes which occurred during the 2:00 PM production session on March 14, 2001 would receive the following time stamp: 03142001-14.

A base project with variants represents a special situation. The variants are given their own dedicated project. As stipulated in Section 3.1.1, only one CMP is necessary to control related projects; the CMP will treat each project as a separate CI. In this case, the CI codes will be the same as the project numbers. The “project number” portion of the release label will be replaced by the name of the aircraft being simulated (e.g., F18e).

Table 4 contains several baseline labels that exemplify the standard process given above

Table 4 Example Baseline Labels

Version Label
Meaning

B09_DISP_FUNC.2
The second revision of the functional baseline for the displays CI (“DISP”) of project B09.

C12_SIM_DSGN.1
The first revision of the design baseline for the simulation math model CI (“SIM”) of project C12.

D08_1.2.3
The third batch baseline based of the second checkout baseline based on the first session baseline of the D08 project which controls only one CI.

F18_F09_1.0.2
The second batch baseline based on the first session baseline of the F09 project variant of the base F18 aircraft simulation.

K09_AC_3.0.0
The third session baseline for the aircraft model (“AC”) CI of the K09 project.

X35_X02_2b
The second historical baseline derived from the second session baseline of the X02 project variant of the X-35.

G03_FMS_06091999-08
The runtime baseline for the FMS CI of the G03 project which was created during the 8:00 am production session of June 9th, 1999.

This document does not provide explicit naming instructions for the versions of individual CI components. It is assumed that this function is handled by the version control software and shall be identified in the Configuration Management Procedures for Simulation Projects. Additional notes about naming components of a given type are presented below:

· Documents. Requirements, design, technical, and end-user documentation shall all contain the project number in their title. All documents are to be stored in electronic form in a version controlled repository. Documents will be part a CI if they describe the CI or any of its components; otherwise, documents will be controlled as their own CI. Many documentation changes relate to source code changes and are considered part of the CR requesting the code change; the CR is not closed until both source code and documentation have changed. Documents are considered a critical part of the CI to which they belong; documentation changed without need to change source code (or other CI elements) can create a new baseline release.

· Test Suites. Test suites are attached to the software CI for which they were designed. They shall be stored in the same repository as the software product, and they receive the same release label as the software product. A revision to a test suite is not considered a revision of the CI and does not prompt a new release of the CI. Test suites are support code for enhancing project quality; they do not represent the software product. When a test suite is revised and accepted, the new revision will receive the release label of the last CI release. (This process removes the release label from the previous revision of the test suite.) The LaSRS++ Software Development Plan and the LaSRS++ Developer’s Guide contain more information on creation and maintenance of test suites. These provisions should not give the impression that configuration control of test suites are not important. Test suites are a focus of attention during functional configuration audits (see section 3.4.2).

· Source Code, Makefiles, and Input Data. The naming guidelines for these components are dictated in the LaSRS++ Developer’s Guide. Attachment to a CI is implied through directory structure and release labeling.

· Unified Method Diagrams - Because of the capabilities of modern OOD/OOA tools. These object-oriented design diagrams can have a dual purpose. If the diagram is being used to generate code, then it is treated as source code. If the diagram only serves to illustrate the design of production code, then it is treated as design documentation. (In many instances the OOD/OOA diagrams may transition from one use to the other.)

3.1.3 Acquiring CIs

All CIs under control of the same CMP will reside in the same repository. The Configuration Management Procedures for Simulation Projects covers repository setup and use in more detail. When a CI is identified, a logically isolated portion of the project repository will be created for it. The initial contents of the CI will include the functional requirements extracted directly from the SPR and any supplemental documentation (including CRs). [Some projects may incorporate source code from outside sources; this code will also be placed in the repository.] All new CI files will be created and controlled in the repository. Only the CCB Librarian and the LAN administrator will have full privileges to access and manipulate the repository. All others will be granted permissions appropriate to their CM responsibilities. The repository will be backed-up onto DMSS daily. At a minimum, a different backup will be generated for each day of the work week and these will be recycled weekly. The backups will be given the file name ProjectNumber.day_of_week.tar.gz. Actual backup procedures will be set by the LAN Administrator under SSB approval. The SCM database itself already guarantees that any previous version of a component may be retrieved at any time; thus, old backups do not need to be maintained indefinitely. The backups are a measure that prevents lost work due to abnormal server termination or SCM repository corruption. When the project ends, a final backup of the database will be made and stored indefinitely or until NASA orders its destruction. If a project has unique concerns for acquiring, controlling, storing, and retrieving CI objects, they will be listed here.

3.2 Configuration Control

This section describes the configuration control activities which request, evaluate, approve/reject, and implement changes to CI baselines. All projects will follow the activities detailed in this CMPT. Projects are free augment these activities in their CMP. If a project CMP adds baselines to the template, then change authorization for those baselines must be explained in the following sections. The remainder of this section discusses configuration control activities for the template baselines.

Change requests (CRs) can be submitted against functional, design, checkout, and production baselines. Batch baselines are considered works-in-progress and forcing change authorization would only hinder the development process. Technically, checkout baselines are also works-in-progress. However, checkout baselines are used for real-time testing and functional configuration audits (FCAs). They have already undergone significant unit and integration testing so defects should be few. Moreover, CRs act as a deterrent against changes hastily made during the short span of a real-time session. Such changes are likely to be poorly designed and frequently fix the symptom of a problem instead of its root cause. Even worse, these changes are more easily lost. CRs also offer a convenient means of recording the results of FCAs. Historical baselines are one-time changes. A CR is submitted to create an historical baseline but a CR cannot be submitted against it. Similarly, CRs are not submitted against run-time baselines. Run-time baselines simply record changes made during a production real-time session. No further development is spawned from them; they are “dead-end” baselines. However, CRs can be submitted against a session baseline to incorporate the changes represented by historical or run-time baselines.

A project CR has seven stages in its life cycle:

1. submittal - for requesting changes

2. review - for evaluating change requests

3. approval - for approving or disapproving change requests

4. authorization - SSB authorizes the labor and/or expenditure required to implement the CR.

5. appeal - for appealing forward or rejection decisions of the CCB

6. execution - for implementing and reviewing changes

7. closure - for closing the CR

The project CCB Secretary will ensure that complete records are received at each stage. Each CR will contain a status field that indicates it current progression through the lifecycle; the valid status values are:

submitted
The change request has been received and given a CR number.

reviewed
The CR has been reviewed by the CCB.

approved
The CR has been approved by the CCB.

authorized
SSB has authorized the labor and/or expenditure required for the CR and the CCB has assigned the CR to an engineer for implementation.

implemented
The CR has been implemented and the implementation has been accepted.

deferred
The CCB Chairman or SSB has determined that an approved CR has too low a priority for immediate allocation of project resources. These CRs usually represent wish list items that are implemented on a time available basis.

duplicate
It has been determined that the CR is a duplicate of another CR.

forwarded
It has been determined that the CR goes beyond the authority of the project CCB and has been forwarded to the proper CCB.

rejected
The CR has been rejected by the CCB.

appealed
A rejection or forwarding decision has been overturned by FSSS or SSB management.

denied
SSB has refused to authorize the labor and/or expenditure required for the CR.

The following subsections describe the activities in each life cycle state and illustrate when each of the status values can be applied to a CR. Figure 4 gives an overview of the CR lifecycle assuming that the CR follows the most formal process detailed in this section.

Figure 4 The Project Change Request Lifecycle

3.2.1 Submittal (Requesting Changes)

Project change requests (CRs) may solicit requirements modifications, requirements waivers, functional enhancements, design modifications, additional documentation, or defect corrections. CRs may be submitted by developers or researchers involved with the simulation project. The CR form requirements appear in Appendix A. There is no “official form”; just an official list of the data that will appear in the form and its general organization. All CRs will be submitted electronically to a defect tracking software product. Most modern defect tracking products allow limited formatting of their CR printouts; therefore, presentation of completely formatted “official form” seems inappropriate. The submitter needs to supply the information listed under Part A of the form. This section records contact information and a summary of the request and its purpose. The submitter shall also provide enough information to reproduce a defect or to test an enhancement/modification (if applicable).

Once a CR is received by the CCB, the CCB Secretary (or the CR tracking software) assigns a CR number to the request. If possible this number should be of the form ProjectNumber-#, where # is a whole number. A CR achieves the ‘submitted’ state only when it receives this number. From this point forward, the submitter will be notified by e-mail of all status changes to his CR. It shall take no longer than one month to address a submitted CR. If no activity on a CR is observed, the submitter should contact the CCB Secretary.

3.2.2 Review (Evaluating Changes)

A CR reaches the ‘reviewed’ state when the project CCB actively evaluates it. The following paragraphs illustrate the most formal process that a CR may take when under review. At the CCB Chairman’s discretion, short cuts may be taken anywhere in this process. For example, a defect which is known to require ten lines of new code to fix could simply be approved by the CCB Chairman without any more review than the time it took him to read the CR. Should the CR review require some discussion, the CCB Chairman does not have to call a formal meeting or approach all the CCB members. The CCB Chairman decides how best to obtain the information he needs to make an informed decision. However, the CCB will formally meet at least once a month to review all outstanding CRs.

On the first Monday of each month, the CCB Secretary will identify all outstanding CRs. The CCB Secretary and the CCB Chairman will assign each CR to a CCB member for review. The assignment guarantees that at least one person will examine the CR; but it does not prevent other CCB members from doing the same. The entire CR list plus the reviewer assignments will be sent to all CCB members along with an announcement of a formal CCB meeting the following Monday. The CR list will be ordered according to priority and will represent the agenda of the Monday meeting. If other issues are to be discussed at this meeting, they shall be listed in the e-mail. The originators and submitters of the CR as well as FSSS and SSB management will also be invited to attend the meeting. (Should either Monday be a holiday, then the activities will be performed the following business day. Should the CCB Secretary be unavailable during the given time period, then the CCB Chairman may appoint someone to temporarily perform the task or may delay it until the Secretary’s return.)

The reviewer will analyze the CR form focusing on its impact to program cost or schedule and uncover any technical risks. If the CR identifies a defect, the reviewer will verify the reproducibility of the defect. The reviewer will record his findings on Part B of the CR form and mark the CR as ‘reviewed’. Any additional costs must be approved by SSB management (see section 3.2.5).

At the formal meeting, each CR will be addressed as per the agenda. The assigned reviewer will make a recommendation; then the floor will be open for debate. All attendees are welcome to join in the debate. The CCB Chairman alone decides when to end the debate; he then will issue his decision on the CR (see section 3.2.3). Under no circumstances will a CCB meeting last more than two hours. If the agenda cannot be addressed in the given two hours, then another meeting will be scheduled no earlier than the following business day. (It is recommended that the meeting be scheduled for the following Monday.)

3.2.3 Approval (Approving or Disapproving Changes)

The CCB Chairman will render a decision on a CR when he feels he has sufficient information.

Part C of the CR form records this decision. The CCB Chairman can make one of four decisions: ‘approve’, ‘reject’, ‘forward’, or ‘duplication’. The result of each decision follows:

approve
The CR is marked ‘approved’. The CCB Chairman now has another choice. The CCB Chairman may defer the CR (see section 3.2.4) or pass the CR to SSB for work and/or expenditure authorization (see section 3.2.5). The CCB Chairman may contact the submitter for suggested modifications to the CR form before approving a request. The submitter is required to send e-mail acknowledgment that he concurs with the modifications. This e-mail will be attached to the electronic CR record.

reject
The CR is marked ‘rejected’. The CCB Chairman must record a reason for the rejection in Part C of the CR form. The CR is considered closed pending appeal (see section 3.2.4).

forward
It has been determined that the requested change is beyond the authority of the project CCB. The CR will be tagged as ‘forwarded’ and sent to the appropriate CCB. This CR is considered closed from the project CCB’s perspective. The forwarding decision can be appealed (see section 3.2.4). (This avoids a potential loophole that provides a way to avoid appeals on rejected decisions.) The CCB Chairman will name the CCB to which the CR has been forwarded and provide an explanation for the decision.

duplication
It has been determined that the requested change is a duplicate of another change request. Two forms of duplication exist: identical and functional. Identical duplication indicates that the change request is a near copy of a previous change request. Functional duplication means that the change request represents a different symptom of the same defect or a different spin on a new feature or enhancement reported in a previous change request. The change request is marked as ‘duplicate’. The submitter is added to the notification list of the “original” CR. A pointer to the original CR will be added to the duplicate.

3.2.4 Deferring a CR

The CCB Chairman can approve a CR and then defer it. The CR is tagged as ‘deferred’. The CCB Chairman must state his reason for deferring the CR on the CR form (part C). A deferred CR has the lowest priority; it is performed on a time-available basis only. This status is usually reserved for ‘wish list’ changes. Deferred CRs are not necessary to complete project goals. They contain non-critical changes that enhance usability of the simulation or fix very minor annoyances. Sometimes customers request a feature that they would like to explore in the future if the project’s primary goals are reached ahead of schedule. A deferred CR remains in limbo; it is not sent to SSB for authorization. A deferred CR can be revived under these conditions:

1. An FSSS developer volunteers to implement the CR and the FSSS Project Manager concurs.

2. The FSSS Project Manager assigns the CR as a training exercise for a new employee.

3. The project elevates it to a required change.

Once activated, the deferred CR is sent to SSB for authorization. The SSB authorizer also has the power to defer any CR (see section 3.2.6), whether or not that CR had previously been deferred by the CCB Chairman. A CR deferred by SSB is no different than one deferred by the CCB Chairman. Any deferred CRs remaining when the project is closed are immediately marked ‘denied’ by the SSB authorizer. The SSB authorizer can type ‘project closed’ as the reason for denial.

3.2.5 Appealed (Overruling Rejection or Forwarding)

The decision to reject or forward a CR may be appealed. Both FSSS and SSB management have the authority to overrule the decision of the CCB Chairman. If they decide to do so, then the CR will be marked as ‘appealed’ by the overruling manager and submitted for work/expenditure authorization (see section 3.2.5). This holds regardless of whether the initial decision was to forward or reject.

Only the submitter may file the appeal. There is no form for appeals. The submitter must simply send an e-mail which references the CR by number and which states his reason for appeal. FSSS employees or subcontractors must send appeals to the FSSS Project Manager. All other appeals are sent to the SSB Assistant Branch Head. If either of these persons (considered the first level of management) decides to support the decision of the CCB Chairman, the submitter may send a second appeal to the second level of management, i.e. the FSSS Program Manager or the SSB branch head. If first level of management decided in favor of the CR submitter, the CCB Chairman has the right to appeal that decision to the second level. Decisions at second level of management are final. Throughout the appeal process, the CCB Chairman must be listed for carbon copy reception on all correspondences regarding the appeal, including the initial letter of appeal.

3.2.6 Authorization

All contractor work and expenditures must be approved by SSB. SSB represents the project’s interests. SSB decides whether it is appropriate to charge the project for implementing the CR. Authorization is also SSB’s main instrument for influencing project changes. It serves as a check against Project CCB decisions. SSB’s actions can cause a CR to be implemented, rejected, or deferred. SSB Management may select no more than two staff members who will share the responsibility of authorizing work and expenditures for CRs. The project Facilitator may be one of these persons. Part C of the CR form will contain fields for SSB authorization of work and expenditures. SSB may refuse to authorize the work and/or expenditure. This, in effect, rejects the CR. The status field ‘denied’ differentiates this rejection from that of the CCB Chairman. The SSB representative refusing the authorization will enter the reason on the CR form. Reasons for refusal are as varied as those for the CCB Chairman. A ‘denied’ CR is closed. SSB can choose to defer the CR. The CR is marked as ‘deferred’ and can be resubmitted for authorization at a later date (see section 3.2.4). SSB will enter the reason for deferral in on the CR form and return the CR to the LaSRS++ CCB. SSB reasons for deferring a CR can include (but are not limited to):

1. SSB wishes to defer any purchases required by the CR into the next fiscal year.

2. SSB is not satisfied with the reviewer’s analysis of the CR. SSB has asked for a broader investigation which will take more than one business day to complete. CR’s requiring a purchase authorization will commonly fall under this reason.

If SSB authorizes the CR, the CCB Chairman will assign the CR to an engineer for implementation. The CR will then be tagged as ‘authorized’.

3.2.7 Execution (Implementing changes)

The developer is granted change authorization when he receives an authorized CR. The programmer creates a “developer baseline” which contains the CR implementation. The developer baseline will be based on the baseline against which the CR was logged (usually a checkout or session baseline). Requirements changes will result in a new functional baseline. Likewise, design changes result in a new design baseline. Source code changes will result only in a new batch or checkout baseline; only small changes should move directly to a checkout baseline. Developer baselines will never be directly folded into a new session baseline because the changes must undergo an FCA first (see section 3.4.2).

When the programmer has tested his changes and is satisfied with the results, the developer will fill out part D of the CR. Part D describes the actions taken to make the change and the actual impact on cost, schedule, and resources. The names and versions of the modified CI components (if any) shall be recorded with the CR. The developer will then contact the CCB Secretary to schedule a code review. The review process is described in the LaSRS++ Software Development Plan and is conducted by the CCB. Once the change passes the review, the change request is ready for closure.

3.2.8 Closure (Closing the CR)

A rejected, forwarded, or denied CR is considered immediately closed and no further action is taken on it. The closure procedures for an authorized CR begin when the CCB Librarian receives the completed change from the review board. Requirements and design changes are merged directly into the appropriate baseline. Source code changes are folded into a new batch baseline unless the review board rules that the change may be used to create a new checkout baseline. Once the change is merged, the developer and the CCB Librarian will complete part E of the CR form, and the CCB Secretary will tag the form as closed. The CCB Secretary will announce the new baseline to all project participants in an e-mail which includes a CR summary (see section 3.3.2.1). This informs all project developers, who are using the batch or checkout baselines for testing, that a new change has been added.

3.3 Configuration Status Accounting

Configuration status accounting is the process that provides for traceability of changes to the software and hardware. It ensures that status is recorded, monitored, and reported on both pending and completed actions affecting the CIs. This section defines the configuration data which is to be tracked. It specifies how the data is to be stored and what access controls will be applied to the data. This section also identifies the required configuration status accounting reports and outlines their contents. Project CMPs can expand the list of data to be collected or the types of reports generated.

3.3.1 Configuration Data

All configuration data will be stored electronically in either the CR or CI databases. Much of this data can be obtained by project developers and users through automated interaction with the SCM software. The version control and CR tracking software will be customized to generate or prompt for critical data. Despite the level of automation possible, some data must be manually entered into the system. The CCB is responsible for ensuring that all necessary data is collected. This entire plan has been written to avoid the recording or transfer of data on paper. Whenever possible, configuration data shall be received through an electronic media such as e-mail. Centralized electronic storage prevents loss of data and can easily be backed-up.

Appendix A defines the mandatory information that must be recorded in each CR. In addition, this CMPT assumes that the version control software records the following information, at a minimum:

a) For each file changed or created,

i) The person who made the change.

ii) The date the change was made.

iii) The reason for the change. This is a meaningful comment supplied by the person identified in (a).

iv) The number of the CR for which this change was made.

v) The lines or bytes in the file which were changed.

b) For each version label created,

i) The person who created the label.

ii) The date the label was created.

iii) The reason for the label’s creation. This is a meaningful comment supplied by the person identified in (a).

iv) The file versions to which the label was attached.

Read access to the configuration data should be freely granted to project developers and customers within NASA LaRC. Only with written authorization from the SSB Branch Head, can read access be granted to third parties. However, some projects may have special security requirements. The project’s CMP will specify who will freely access the system. Write access to the configuration data shall be granularized such that only those persons with authority to change a data item (as specified in this plan) are granted write access to that item. This is particularly important for electronic signatures on CR forms.

3.3.2 Configuration Reports

Configuration reports convey the status of the project configuration. CR database software usually provides a pre-packaged set of reports and the ability to create custom reports. Read access to the CR database should be freely given so that members of the simulation development community can extract status information and metrics to meet their unique needs, security requirements not withstanding. The remainder of this section details the three reports that the project CCB must release as part of their CM activities. These reports are the CR summary, release notes and the monthly CR status report. These reports sufficiently inform the simulation development community of completed and pending changes. The contents of these reports are described; but, as with the CR form, no specific format is given. The exact format of the reports is dependent on the capabilities of the reporting function in the CR tracking software. The focus of this process is to inform project members of CM developments, not to give the CCB Secretary the work of creating additional scripts which will automatically format each report according to someone’s arbitrary vision. It is recommended that when these reports are issued, a copy be e-mailed to all project developers and interested parties in SSB and FSSS management. The CCB Secretary is charged with creating and distributing these reports.

3.3.2.1 CR Summary

A CR summary is issued whenever a CR is closed and a new CI baseline established from it. The CR summary informs project developers of a new change that has been made visible to all project members. The CR summary will contain:

1. The CR number. (required)

2. The CR title. (required)

3. The CR description. (highly recommended)

4. The implementor’s notes. (recommended)

The first two items are mandatory. The CR number provides a reference which can be used to retrieve the CR from the database if the reader wants more information. The CR title gives the reader some insight into the enhancement or defect addressed by the CR (so he can intelligently decide what CRs he would like more information about).

3.3.2.2 Release Notes

Release notes are generated with the establishment of each new production baseline. Release notes inform users of the changes represented in the new production baseline and of the change requests that remain unresolved. At a minimum, release notes will contain four listings. The first list holds summaries of all CRs which were closed since the last release. The second list contains summaries of all CRs which remain open. (The contents of these CR summary lists are identical to the CR summary report.) The third list is an inventory of all the file versions that make up the release. The fourth is a list of files which were changed, added, or deleted since the last release. These file listings shall contain:

1. The full pathname of the file (required).

2. The version identifier of the file version which is contained in the release (highly recommended, inventory list only).

3. A field that specifies whether the file was added, deleted, or modified since the last release (required, list of changed files only).

3.3.2.3 Monthly CR Status

For each configuration item, a summary of CR activity for the prior month is compiled by the CCB Secretary. The report is created on the first Monday of each month as part of the activity in which the CCB Secretary identifies outstanding CRs that must be addressed at the next formal CCB meeting (see section 3.2.2). The report includes summaries of newly submitted CRs and CRs whose status has changed during the period. The CR summaries are identical to the CR summary report with the exception that they must contain the current status of the CR as part of the summary. The report may be broken up into three sections for readability: new submissions, closed CRs, and modified CRs; but, this is not required.

3.4 Configuration Audits and Reviews

This plan defines three formal reviews that must take place as a final check on the software CIs: the code review, the functional configuration audit (FCA), and the in-process review. If documentation is required for a project or if the software product will be shipped to a third party, then the project CMP must also include a physical configuration audit (PCA).

3.4.1 Code Review

The code review occurs as part of the process for accepting developer changes. It verifies that the change meets LaSRS++ standards as specified in the LaSRS++ Programmers Guide and searches for deficiencies in the implementation of a requirement or change request. The code review is conducted by the CCB. Details of the code review are found in the LaSRS++ Software Development Plan.

3.4.2 Functional Configuration Audit (FCA)

The FCA encompasses the process of transitioning a checkout baseline into a production baseline. The FCA verifies that the software successfully meets the project requirements and/or approved change requests. Since the SSB Facilitator represents the interests of the research community, the SSB Facilitator performs the audit. Before the audit begins, the auditor must produce a checklist of critical items he intends to verify, in the order they are to be tested. He will submit this list to the Project Leader at least three business days in advance (two weeks in advance for the first FCA) so that the project development team can properly prepare for the audit.

The auditor is responsible for scheduling real-time sessions under which the audit is conducted; he alone decides how many of these sessions are necessary to complete the audit. He will inform all interested research customers of these audit sessions. Researchers are free to observe and contribute to the audit process. It is recommended that the entire development team be present at these sessions to observe deficiencies and answer questions. At a minimum, the Project Leader or his designee will be present at all audit sessions. If the audit will also test new LaSRS++ objects created for the project (see section 3.5), then the Architecture Consultant will also attend.

During an audit session, items on the audit checklist will be systematically tested in real-time. The auditor will record any deficiencies as they are found. The checklist is NOT the definitive guide to passing the FCA. The auditor is free to deviate from the list during an audit; however, he is not guaranteed that other functions he wishes to observe will be set-up for testing in a timely fashion. Moreover, both the auditor and the researchers are free to stray from the functional baseline requirements or closed CRs when making recommendations. At the end of each audit session, the auditor will hold a short meeting to review the deficiencies and recommendations recorded by himself or the researchers. The meeting will decide which items will be converted into change requests and which will be discarded. Deficiencies in meeting functional baseline requirements or closed change requests will be converted into a change request, even if the purpose of the request is to allow the deficiency. Such requests are termed deviations or waivers for existing requirements. The appropriate CCB (LaSRS++ or Project) will address any CRs necessary for successful completion of the FCA within two business days. All other CRs can be postponed until the next formal CCB meeting.

The audit continues until the auditor or the project’s Principal Investigator accepts the software. The auditor will then grant permission to the CCB Librarians to establish the new production baseline. Acceptance of the simulation software can be delayed (thus, extending the audit) only if:

1. The checkout baseline does not properly implement a functional baseline requirement or closed change request, and a deviation or waiver is not granted.

2. A researcher has made a last minute requirements change that must be in place before the next production session.

All other identified deficiencies or recommendations will be addressed in a future production baseline.

The first FCA will take a large amount of time. The first FCA covers all the functional baseline requirements and the first set of closed change requests. Project developers should expect to devote the entire audit period to supporting this FCA. Subsequent FCAs will work with small sets of closed change requests; these should take considerably less time, usually only one real-time session.

3.4.3 In-Process Audit

At SSB management’s discretion, SSB may perform an in-process audit of project development. This audit independently verifies that project development is proceeding according the rules and standards detailed in the project CMP and the LaSRS++ software management documents. SSB will choose the auditor from among their staff. The auditor cannot be the SSB Facilitator for the project; the auditor must be an independent observer. The auditor is free to request documents required by the software management process. He may observe the work being done by FSSS developers. He may survey the development staff using a set of questions approved by the SSB Branch Head and the FSSS Program Manager. The audit will not last more than one month. At the conclusion of his audit, the auditor will schedule a meeting with SSB management, FSSS management, and the project CCB. At the meeting, the auditor will present his findings. Then debate will begin on any deficiencies uncovered by the auditor. The auditor alone has the authority to end the debate; it is recommended that the meeting not last more than two hours. If an action item is generated that requires a change in the project CMP or the LaSRS++ software management documents, the item will be recorded on a CR and submitted to the appropriate CCB.

3.4.4 Physical Configuration Audit

A PCA is required only if the project software will be released to a third party or if documentation is a project requirement. The PCA will be performed for any of these three events:

1. Prior to a transfer of the project software to a third party.

2. After the completion of the first FCA

3. One year following the last PCA (for long lived projects only).

The PCA verifies that all required documentation correctly reflects the capabilities of the production baseline. For a PCA triggered by shipment of project software to a third party, only those documents intended to be part of the shipment need to be audited. The PCA also verifies that the distribution media used for the software delivery contains only those baselines of the project CIs which were contracted for delivery. The PCA ensures that these copies are installable and usable.

The CCB Secretary will identify and assign all of the documents to be audited. The CCB Secretary will send an e-mail to all CCB members, informing them of their assignments. The CCB members will review their assigned documents and report any discrepancies through a CR. When a CCB member has completed reviewing all of their assigned documents, they will inform the CCB Secretary via e-mail. Once the CCB Secretary has received this e-mail from all CCB members, the CCB Secretary will schedule a meeting to discuss all CRs submitted as a result of the audit. This meeting is similar to a normal CCB meeting. The agenda of the meeting is to discuss each CR; then, the CCB Chairman will accept or reject it. Only CCB members, FSSS management, and SSB management are invited to the meeting. After the meeting, the CCB Chairman submitted the approved CRs to SSB for authorization. Once all the CRs are resolved and instituted, the CCB Chairman will confer with the FSSS Project Manager and SSB Facilitator. Both will approve the audit.

For distribution media auditing, the CCB Librarian will examine the contents of the distribution media to make sure they are complete. He will also load, build, and run the software from the distribution media to ensure that it is installable and usable.

3.5 Interface Control

This section discusses other organizations which the project development team must interface with both on an SCM level and a design level. If the project CMP adds organizations to the chart in section 2.1.1, it will use this section to describe the interfaces with these organizations and how these interfaces are to be managed. The discussion which follows identifies interfaces common to all projects.

Project software is built using the LaSRS++ application framework. Projects do not have the authority to make changes to the framework. The framework has its own CMP and CCB. Project developers may affect changes in the LaSRS++ framework by submitting CRs to the LaSRS++ CCB. The LaSRS++ CCB has a vested interest in the development work of simulation projects. Each new project has the capacity for adding or enhancing the functionality of the LaSRS++ application framework. The FSSS Project Manager assigns an Architectural Consultant (AC) to each simulation project. The AC examines the project’s requirements and designs for new or innovative software components that can benefit current or future simulation projects. He will submit a CR to the LaSRS++ CCB recommending the acceptance of each reusable component found. If the CCB agrees, complete control of the component will be transferred to the LaSRS++ CCB. The project development staff will still be expected to create the new component; however, approval of their design and initial implementation now rests with the LaSRS++ CCB. Acceptance of the component still occurs through the project’s FCA (see section 3.4.2).

The project software must run on the real-time hardware configuration. Hardware changes which require software changes (or vice-versa) will require the approval from the Simulation Systems CCB. The Simulation Systems CCB reviews proposed cross organizational changes and produces a set of requirements, for all the affected organizations, which will implement the change. The Simulation Systems CCB is designed to avoid situations where one organization unilaterally makes decisions affecting others without consulting them. More often than not, these situations can cause slips in program schedules and increase tensions between organizations. This document does not describe the creation and activities of the Simulation Systems CCB; this can be found in the Simulation Systems Configuration Management Plan.

A number of commercial, off-the-shelf software (COTS) packages are used in support of simulation project development. COTS configuration management must ensure that changes to these packages do not adversely impact simulation development. Since COTS changes generally involve multiple simulation projects, their configuration management remains under the authority of the Simulation Systems CCB.

3.5.1 Subcontractor/Vendor Control

This section usually does not apply to simulation projects. However, if a project receives source code or executable programs from a third party or subcontractor, the project CMP must specify what control SSB and the FSSS contractor has over changes to this supplied software.

4. SCM Schedules

Implementation of a project CMP shall begin as soon as it is approved by the Project Leader, the FSSS Project Manager, and the Simulation Systems CCB. The minimum key events in the CM implementation phase are as follows:

· Establish the CCB.

· Select the CCB Secretary and the CCB Librarian.

· Write the CM procedures which complement this plan and obtain approval for the procedures from the Project CCB and the FSSS Project Manager.

· Establish the project CR database and customize it with a CR form that meets the requirements specified in the CMP. (A base CR form will be available for projects that do not need to add data beyond that listed in Appendix A.)

· Establish the project repository. All project CIs will be controlled within the same repository (see section 3.1.3).

The project CMP will include any project specific implementation events. At this point, a solid environment has been constructed for performing the CM activities of the project plan. Plans that do not deviate greatly from the basic approach in this plan should be capable of reusing existing SCM product customizations. Any additional customization must be complete before design begins.

Table 5 displays the periodic CM activities on a calendar representing a generic month. These activities are mandatory elements of this template CMP. Project CMPs will reproduce and expand this calendar if they add other control activities.

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

1
2

· Monthly CR Status Report

· CCB Meeting
Announced
3
4
5
6
7

8
9

· Monthly CCB meeting
10
11
12
13
14

15
16

· Physical Configuration Audit (PCA) begins

17
18

· Configuration Management Review

19
20

· PCA Review2
21

22
23
24
25
26
27
28

29
30
31

Table 5 Generic Calendar Displaying Periodic CM Activities

5. SCM Resources

Good software configuration management consumes project resources in the form of equipment, money, and personnel. This section describes the resources required to perform the activities of the projects CMP. The following text discusses the standard resources available to projects. The project CMP must address project-specific resources allocated for CM activities.

5.1 Software Resources

An integrated set of SCM tools will be used for configuration control and status accounting for this project. In addition, there are a number of other software tools which augment minor administrative tasks such as scheduling meetings, submitting CRs, sending announcements, etc. The software that has been selected for use in conducting CMP activities are:

1. ClearCase from PureAtria Software. ClearCase provides version control and release management for source code and documentation. The software provides a database that holds change event information and user-defined annotations; the software supplies a query utility to extract this information for use in reports. ClearCase will be used to support the baseline evolution in this plan. It shall also enforce change authorization as discussed in this plan.

2. PureDDTs from PureAtria Software. PureDDTs provides a database for life cycle control of change requests. It handles submissions through e-mail, its X-Windows interface, or a web browser. The change request form used by the product can be customized to exact specifications presented in this document. This customization is required before the CMP is implemented. PureDDTs also provides reporting and graphing features for status accounting of change requests. Both the reports and graphs are customizable to automate the CM reports specified in this document.

3. Netscape Navigator 3.0. The customized WWW interface to PureDDTs will be designed and tested using Netscape Navigator; this will be the only web browser that FSSS guarantees will work with the WWW interface. All e-mail correspondence specified in this plan will assume that recipients have an e-mail reader with the same capabilities as Navigator. NASA LaRC has a site license for this software; simulation users shall obtain one immediately.

4. Microsoft Office, LaTeX, and Adobe Acrobat. Miscellaneous documentation must be written using either Microsoft Office or LaTeX. All documents pertaining to configuration management must be stored as either Microsoft Office documents, LaTeX scripts, Acrobat .pdf documents, or postscript files.

5. A multi-user NT server that supports X Windows connections. All FSSS employees have a PC running Linux. In order to run Microsoft Office productively, these developers need access to Microsoft Office from their workstations. This can be accomplished with an application server running a customized version of WindowsNT Server that allows connection by X-Windows based machines. Currently, only three products of this type are available: NTrigue from Insignia Solutions, WinCenter/Pro from NCD, and NTerprise from Exodus Technologies.

6. Autoplan2. This software is used to create and modify SCM schedules.

7. ical. The CCB Secretary will create a calendar of CCB events using this software. The calendar will be publicly available for attachment by other ical users.

A meaningful integration exists between ClearCase and PureDDTs. This integration allows developers to map version control activities to change requests stored in the PureDDTs database. Because both products provide query utilities to extract information from their databases, one can write scripts to automatically produce reports which requires information from both products such as release notes.

5.2 Hardware Resources

Software needs hardware on which to run. The following hardware items are necessary to run the above software efficiently (most of these items have already been purchased):

1. An SGI Challenge DM with 384MB of RAM, Dual R4400 processors running at 200Mhz, and a 20 GB RAID-5 disk subsystem. This computer will serve the ClearCase (and possibly PureDDTs) users. This machine will also act as a file server for the entire development environment. This machine should have a high bandwidth network connection (100 Mbps preferred).

2. The Web-based interface to PureDDTs will require a server running Solaris, HP-UX, or AIX. This server must have 64MB of RAM (minimum). The CPU power and network bandwidth must be sufficient to service forty simultaneous users.

3. SGI, Sun, and WindowsNT workstations. These computers are capable of being direct clients of the ClearCase and PureDDTs server(s). There needs to be a sufficient number of these computers to service all users. These computers should have a combined memory capacity of 1.2GB of RAM above that required for their operating systems; this is enough memory to service 40 simultaneous users.

4. One computer for each project member with X-Windows, WWW, and mail clients.

5.3 Human Resources

This plan specifies several critical roles for proper execution of configuration management for LaSRS++. These roles must be filled with persons who have the proper skills and experience. Other support personnel and their unique skills are also identified:

a) The CCB Chairman must have the following qualifications:

i) 1+ years experience developing object-oriented simulation software with C++.

ii) A complete understanding of the Unified Method for designing OO software.

b) The SSB Facilitator must have the following qualifications:

i) 1+ years experience in a real-time simulation environment.

ii) Working knowledge of object oriented analysis (OOA).

c) The CCB Secretary must have:

i) Good interpersonal skills.

ii) Working knowledge of PureDDTs administration.

iii) Functional knowledge of ClearCase.

iv) UNIX mail configuration is highly recommended.

v) The following additional skills are plusses: basic UNIX administration, c-shell scripting, perl scripting, awk scripting, html authoring, CGI programming, SQL programming.

d) The CCB Librarian must have:

i) Working knowledge of ClearCase administration.

ii) Functional knowledge of PureDDTs.

iii) Basic UNIX administration skills. (Advanced UNIX administration highly recommended).

iv) GNU makefile programming experience.

v) C-shell or perl scripting is recommended.

e) PureDDTs customizer. The CCB Secretary has not specifically been given the responsibility of customizing the database. The CCB Secretary does have the responsibility of managing the customization. This does not exclude the CCB Secretary from being one of the persons who does the actual customization. The PureDDTs customizer needs the following skills:

i) Working knowledge of PureDDTs customization.

ii) C-shell scripting.

iii) Experience customizing UNIX mail systems.

iv) Awk or perl scripting (for customizing reports). [The built-in reports are awk scripts, but they can be converted to perl scripts.]

v) SQL programming (for customizing reports). [This is required only for certain complex customizations.]

f) WebTracker Customizer. WebTracker is the name of the WWW interface to PureDDTs. The person customizing this interface needs the following skills:

i) HTML 3.0 authoring including Netscape Navigator extensions.

ii) CGI programming.

g) ClearCase customizer. The CCB Librarians manage and perform most ClearCase customization. However, they may rely on staff with greater knowledge of C-shell or perl scripting to accomplish customizations involving ClearCase triggers. These customizers should also have a firm grasp of ClearCase’s query function and of advanced UNIX commands. [Future versions of ClearCase will include a perl variant for creating triggers.]

Administrative SCM activities (including software administration) should be minimal and take less than ten percent of CCB Secretary’s and CCB Librarian’s time once the plan is implemented. These activities could take a little more of the CCB Chairman’s time since the CCB Chairman shoulders the bulk of CM responsibilities; however, many SCM activities overlap the work that Project Leaders are expected to perform anyway. Customizations could take considerably more man-hours and can only be judged on a case-by-case basis.

6. SCM Plan Maintenance

The Project CCB is responsible for maintaining the CMP and all documentation collected as a result of CMP activities. The majority of the documents shall be stored in the CR database. However, CR attachments and e-mail correspondences may require separate storage; a central storage location, in the same directory structure as the CR database, will be established for these additional documents. At a minimum, all SCM documents will be backed-up to DMSS daily; these daily backups will be recycled weekly. The backups will be given the name ProjectNumber_CRs_day.tar.gz where day is the day of the week.

For long lived projects, the CCB will hold yearly reviews of the CMP and its companion procedures. The CCB Chairman has the authority to call a CMP review at any time in response to a configuration management failure that needs immediate attention. The CCB Secretary will send an e-mail announcement of the review to all CCB members, FSSS management, and SSB management. The review shall focus on deficiencies and difficulties with the CMP and its procedures. Comments from customers and developers need not wait for a review meeting to be voiced. At anytime, a customer or developer may submit a CR against the CMP or its companion procedures. The CCB Chairman has the right to act on these requests under the normal process or defer them until the formal CMP review. The CMP review meeting will begin with debate over these outstanding CRs. Thereafter, the floor will be open to any who wishes to voice a problem with the project’s configuration management. The CCB Chairman has the authority to create CRs from action items that emerge during this discussion. These action items will be recorded as ‘reviewed’ CRs and submitted to the project CCB for approval. Once approved, CMP CRs will be assigned and implemented.

This CMPT is part of the LaSRS++ Software Management Document Configuration Item under control of the LaSRS++ CMP. Change requests against it are submitted through the LaSRS++ CCB. See the Configuration Management Plan for the Langley Standard Real-Time Simulation in C++ for more information.

Appendix A Change Request Form Requirements

A change request has up to seven stages in its life cycle; these are submittal, review, approval, appeal, authorization, execution, and closure. Information concerning the change request must be collected at each applicable stage. This appendix describes required and optional data items that appear on the change request form. Although no specific format is presented, a general format which splits the CR form into five ‘parts’ is presented. These ‘parts’ follow the progression of the CR form as it moves from submission to closure. Data items which are followed by ‘(optional)’ do not need to be filled in; all other data items are required.

PART A: Submission

This part of the change request form is to be completed by the submitter and the CCB Secretary. It provides a description of the requested change, who submitted it, and how to contact them. The submitter must supply the following information:

1. Submitter’s name

2. Submitter’s phone number

3. Submitter’s e-mail address

4. Project Number

5. Subject/Title of CR - The submitter enters a short (one line) description of the requested change.

6. Description of the requested change - The submitter prints a more detailed description of the change. The submitter may refer to an attachment.

7. Reason for Change - The submitter prints the reason he is requesting the change. Reasons for proposing a configuration change fall under two categories: new functionality/enhancement or detection of a software/documentation defect (see item #10). For a defect, the submitter is allowed to simply write 'defect'. However, all other requests require a more lengthy explanation. The submitter can refer the reader to an attachment for more detail.

8. Recommended Test Procedure - (Optional) The submitter provides test data here. He may refer the reader to an attachment. For a defect, this data field will contain sufficient information for reproducing the defect and an explanation of what the correct response should be. For an enhancement, this section will contain data or test procedures which will allow the development staff to independently verify the enhancement.

9. No. of attached documents - (Optional) The submitter indicates the number of attached documents to the request. Attached documents generally provide more detail than can fit in the space provided for items 5, 6, and 7. This data field may change after submission; as the CR progresses through its lifecycle, more attachments may be added to the CR.

10. Desired Completion Date - (Optional) The submitter prints a desired completion date. This data field helps the CCB determine the relative priority of requests. Omission of a date will automatically indicate that the request is a low priority item.

The remaining items are filled in by the CCB Secretary or by the CR tracking software upon reception of the submission:

11. Date received

12. CR number

PART B: Review

After submission, the CR is either reviewed solely by the CCB Chairman or assigned to a CCB member for review. The reviewer must detail the impact this change would have on the project and make a recommendation for or against approval.
13. Reviewer’s Name - The reviewer prints his name.

14. Configuration items affected - The reviewer lists the CI releases which will be modified to implement the change. CI releases are identified by their release label (see section 3.1.2).

15. Labor - The reviewer estimates the number of man-hours required to implement the change. The reviewer may refer to an attachment for more detail.

16. Schedule - (Optional) The reviewer prints the estimated impact the CR will have on the project schedule. The reviewer may refer to an attachment for more detail.

17. Cost - (Optional) The reviewer estimates expenditures required to implement the change. The reviewer may refer to an attachment for more detail.

18. Other considerations - (Optional) The reviewer details other non-monetary resources required to accomplish the task. The reviewer will also describe any technical risks or special circumstances related to the change. The reviewer may refer to an attachment for more detail.

19. Recommendation - The reviewer will make a recommendation with references to the items #15 - #18 as appropriate.

PART C: Approval, Appeal, and Authorization

This section of the form records the variety of decisions that determine the end result of the CR. This section also contains current status of the CR.
20. Current Status - This data field displays the current status of the CR. The valid status values are: submitted, reviewed, approved, authorized, appealed, implemented, rejected, denied, forwarded, or duplicate. (See section 3.2.) It is recommended that these values be represented as a series of check boxes which can only be modified by the individual who has the authority to make transition.

21. CCB Chairman’s Name - This field is the electronic signature of the CCB Chairman.

22. Decision Date - This is the date on which the question of CR approval was decided (see section 3.2.3). This field is filled out by the CCB Chairman.

23. Overruling Manager’s Name - (Required for successful appeals only) This field is the electronic signature of the manager who overruled a CCB decision on appeal.

24. Overrule Date - (Required for successful appeals only) This is the date on which the overruling decision was made. This date is filled out by the overruling manager.

25. Labor Authorization - This is the electronic signature of the SSB staff member who authorizes the labor expenditures for CRs.

26. Purchase Authorization - (Required for CRs with expenditures) This is the electronic signature of the SSB staff member who authorizes purchases for the CRs.

27. Authorization Date - This is the date on which all necessary authorization signatures were entered.

28. Comments - The LaSRS++ CCB chairperson may include comments which explain the CCB’s action, or which add clarification or modifications to the CR. Those with powers of appeal or authorization are also encouraged to add comments here. Comments are required for rejected, forwarded, appealed, and denied CRs.

29. Expected Completion Date - (for authorized CRs only) Instead of using an abstract priority scheme, the CCB Chairman assigns an expected completion date to signify the CR’s priority. This date is a soft deadline. The negotiated completion date will appear in the project schedule.

30. Forwarded Project - (for forwarded CRs only) The name of the project to which the CR was forwarded. This item is filled out by the CCB Chairman.

31. Forwarded CR number - (for forwarded CRs only) The CR number assigned by the project CCB to which the CR was forwarded. This item is filled out by the CCB Chairman.

32. Duplicate CR number - (for duplicate CRs only) The CR number of the original CR of which the current CR was determined a duplicate. This item is filled out by the CCB Chairman.

PART D: Execution

This part of the form records the actual implementation of the CR.
33. Assigned engineer - This is the name of the assigned engineer or lead engineer. He is selected by the CCB Chairman who fills out this item.

34. Assigned engineer’s phone number- This item is filled out by the assigned engineer.

35. Assigned engineer’s e-mail address - This item is filled out by the assigned engineer.

36. Items modified - This is the complete list of items modified in response to the CR. This data should be auto-generated by an integration between the CR tracking and version control software products. The list of items shall contain the item’s name and the version(s) of the item containing the CR’s changes. (Interim changes of a CI component may spread the CR’s implementation over multiple versions.)

37. Comments - (Optional) The assigned engineer can leave comments concerning the implementation here.

38. CCB Chairman’s acceptance - This is an electronic signature which indicates that the implemented change has been reviewed by the CCB and accepted.

39. Acceptance date - The date the implementation was accepted. This item is filled out the CCB Chairman.

PART E: Closure

This section records the actual incorporation of the CR into a formally controlled baseline. It also records the actual resources used to implement the change.

40. Actual Labor - The actual man-hours required to implement the change. This item is filled out by the assigned engineer.

41. Actual Cost - (Optional) The actual monetary cost. This item is filled out by the CCB Chairman or assigned engineer.

42. CCB Librarian’s Name - This is the electronic signature of the CCB Librarian who has incorporated the change and established a new baseline.

43. CI Identification - The version label attached to the newly created baseline. This item is filled out by the CCB Librarian.

44. CCB Secretary’s Name - This is the electronic signature of the CCB Secretary. The CCB Secretary fills this items after verifying that the CR form contains all required data.

45. Actual completion date (a.k.a. the closure date) - the date that the new baseline was actually established. This item is filled out by the CCB Librarian.

Required Data for Status Transitions.

Certain data items must be completed before a CR can be tagged with its next logical state. This section provides a map which links the above data items (by number) to the status values and provides the person authorized to make the transition:

Table 6 Required Data Items and Authorized Roles for CR Status Transitions

Status Value
Required Data Fields
Authority

submitted
1-7, 11, 12, 20
CCB Secretary or Chairman

reviewed
submitted + 13-15,19
CCB Reviewer

approved
reviewed + 21 - 22
CCB Chairman

rejected
same as approved + 28
CCB Chairman

forwarded
same as approved + 28,30,31
CCB Chairman

duplicate
same as approved + 28, 32
CCB Chairman

appealed
rejected or forwarded + 23, 24
FSSS or SSB Management

authorized
approved or appealed + 25, 26 (purchases only), 27, 33
SSB management and CCB Chairman

denied
approved or appealed + 28
SSB management

implemented
authorized + 33-36,38-45
CCB Librarian, CCB Secretary, and CCB Chairman

� The Principal Investigator approves audits on behalf of all customers.

� PCA’s are required only for projects which contain documentation requirements or will ship their software to a third party. These PCA’s are done yearly for long lived projects.

� Configuration management reviews are held annually for long lived projects; they are optional for other projects.

PAGE
40
CMP1.0.doc

2/7/97

