
anager CAPERS JONES, SOFTWARE PRODUCTIVITY RESEARCH

How to get

work togeger.
tec nolo and to

There’s an old sayizg that goes: “There nre t z o kinds
of failwes: those who thought and never did and those
who did azd nevw thought. ’’ In the software business,
OUT WOKV faihres tend to fall into the second categoFy.
Too often we plunge into a majoT-pqiect, xithozit consid-
erizg the factors that have the s?rongeJt bearing on m c -

cess or failwe. Even z o n e , many sofica7-e managers
refuse to leain j?om failure, repenting tbe same destmc-
tive behavia7 pqiect afie?? pi-oject, then zoizdel-ing zhjl
Mylanta has become one of their majoi-fiod pozips.

This issue, Capeis Jones talks about failed projects
and the pmctices that lead t o them. Th?.oughout his
career, yoones has studled thousands of softzare pF-qects.

gth lies zn hzs ability t o ana&e the nztzral soft-
ncs and exb act pr-agmatzr adctte fo7- ?-ea1 maiz-
real prqects. Heeding his message may help you

A R S I HAVE STL-DIED TIT’O
iated mth software-development

set new records for quality and pro-
that were total disasters and

led or delayed severely. T o
oftware projects have been

of thousands of software
ating research into topics

re-project outcomes. Bv con-

~~

Editor:
er Pressman

R.S. Pressman &
Associates, Inc.

Orange, CT 06477
pressman@rspa.com
http://www.rspa.com

e extremes of possible results, I
e root causes of success and fail-

t be more clearly visible
T h e overall results of my research have been

published in several books cited in the reading list
in the box on page 104, which contains a small sam-
pling of the many studies available on software fail-
ures, successes, and risk factors. Here I concentrate
on 10 of the worst current practices - those factors
that most often lead to failure and disaster. I coii-
sider a software project a failure if it was:

+ terminated because of cost o r schedule
overrurq

+ experienced schedule or cost overruns in
excess of 50 percent of initial estimates, or

+ resulted in client lawsuits for contractual
noncompliance.

T h e following paragraphs describe, i n
descending order, the 10 practices that con-
tribute most to such software failures.

PRACTICE 1 : No historical software-measu7ement
dntn. W h y should a lack of historical measure-
ment data be the key to almost every software
failure in the world? Because a lack of solid his-

torical data makes project managers, executives,
and clients blind to the realities of software
development.

Suppose you are managing a type of software
project that no company has ever built in less
than 36 calendar months. As a responsible man-
ager, you develop a careful estimate and critical-
path analysis, then tell the client and your own
executives that you think the project will require
from 36 to 38 months to complete.

What often follows is an arbitrary rejection of
your plan and a directive by either the client or
your own executives to finish the project in 18
months. Where does this schedule come from? It
is probably an arbitrary number totally unrelated
to the size and complexity of the project or to the
skill and experience of the development team.
Once management creates such an arbitrary
schedule, the project in question will usually be a
disaster; it will certainly run late. From the day
the directive is issued, the project is essentially
doomed.

PRACTICE 2: Rejection of accurate estimates. T h e
fundamental reason for many software disasters

M A R C H 1996 0 7 4 0 7 4 5 9 / 9 6 / $ 0 5 00 0 1 9 9 6 I E E E

mailto:pressman@rspa.com
http://www.rspa.com

manager

is that our industry lacks a solid empiri-
cal foundation of measured resul ts ,
Thus, almost every major software pro-
ject is subject to arbitrary and sometimes
irrational schedule and cost constraints.
Therefore, lack of accurate measure-.
nient data is the root cause for practices
three through 10 and contributes to al
host of secondary problems, including
but not limited to:

+ inability to perform return-on-.
investment calculations,

+ susceptibility to false claims by tooll
and method vendors, and

+ software contracts tha t art:
ambiguous and difficult to monitor.

PRACTICES 3 A N D 4: Failure to use auto-.
mated estimating tools and automated p l a w
ning tools. Many factors must be dealt
with when constructing an accurate soft-
ware-cost estimate and developing a
re a li s ti c pro j e c t - d ev e 1 o p ni e n t p 1 an .
Manual methods for estimating and
planning are inadequate for large sys-
tems. There are about 50 commerciall
software-cost estimating tools and mort:
than 100 project-planning tools on the
market. Software projects that use such
tools concurrently have a much greater
probability of success than those that
attempt to estimate and plan by manual
means.

Some very common tool combina-.
tions include software-cost estimating
tools such as Checkpoint, Cocomo,
Estimacs, Price-S, or Slim and general-.
purpose project management tools such
as Microsoft Project, Primavera, Projeci:
Manager’s Workbench, or Timeline;
the two categories complement each
other.

Est imat ing tools have a bui l t - in
knowledge base of specific software fac--
tors such as the impact of various
methodologies and tools. T h e project-.
management tools can focus down to the
level of individual employees. Together,
the combination of estimating and plan-
ning tools leads to accurate and realistic
outcomes n o t easily overr idden by
clients or executives.

PRACTICES 5 A N D 6: Excessive, iwational

I E E E S O F T W A R E

schedule piasure afad creep in user ?,eguire-
ments. These practices also derive from a
lack of solid empirical data. Once man-
agement or the client imposes an arbi-
trary and irrational schedule, they insist
on adhering to it, which results in short-
cuts to design, specification, and quality
control that damage the project beyond
redemption.

At t h e same t ime, t h e or iginal
requirements for the project tend to
grow cont inuous 1 y th roughout the
development cycle. ’l‘he combination of
continuous schedule pressure and con-
t inuous growth in unant ic ipated
requirements results in a very hazardous
pairing.

Software requirements change a t an

average rate of about 1 percent per cal-
endar month. Thus, for a project with a
12-month schedule, more than 10 per-
cent of the final delivery will not have
been defined during the requirements
phase. For a 36-month project, almost a
third of the features and functions may
have been added as afterthoughts

These are only average results. I have
observed a three-year project in which
the delivered product exceeded the func-
tions in the initial requirements by
about 289 percent. Fortunately, the
function-point metric now lets project
teams directly measure the rate at which
requirements creep or grow.

PRACTICES 7 A N D 8: Failwe t o monitor
p??oyess and t o pmjirm @mal TYsk maFz-
ngement. T h e s e two practices often
occur together and are at least strongly
associated. T o date, no standard check-
points for software projects exist that
function as clear and unambiguous indi-
cators of possible failure or success. This
lack leads to surrogates, such as the

well-known but subjective “90 percent
completion” assertions by project inan-
agers or technical personnel.

Nor is there a standard checklist of
software-risk factors that should be evalu-
ated. Even a rudimentary checklist of soft-
ware-risk control factors would be helpful:

+ What measurement data from sim-
ilar projects has been analyzed?

+ What measurement data on this
project will be collected?

+ Have formal estimates and plans
been prepared?

+ How will creeping user require-
ments be handled?

+ What milestones will be used to
indicate satisfactory progress?

+ What series of reviews, inspec-
tions, and tests will be used?

PRACTICES 9 A N D 10: Failuipe to use dezign
reviews and code inspections. Sadly, most
projects that end in disaster might not if
their development teams used one of the
most effective technologies in all of soft-
ware engineering: Formal design and
code inspections. These two practices
have a 30-year history of succes!;ful
deployment on large and complex soft-
ware systems. All “best-in-class” soft-
ware producers use software inspections.
The measured defect-removal efficiency
of inspections is about twice that of most
forms of software testing: about 60 per-
cent for inspections versus 30 percent
for most kinds of testing.

MINIMIZING RISKS. Actually, practices 6
through 10 are intertwined and have a
common solution. A well-formed risk-
analysis and milestone-tracking program
for software projects depends, quite sim-
ply, on successful completion of formal
design and code inspections.

Overcoming the risks I’ve shown
here is largely a matter of opposites, or
of doing the reverse of what the risk
indicates. Thus, a well-formed software
project will create accurate estimates
derived from empirical data and sup-
ported by automated tools for handling
the critical-path issues. Such estimates
will be based on the actual capabilities of
the development team, and will not be

arbitrary creations derived without any
empirical data.

Neither executives nor clients should
reject well-formed estimates just because
they don’t like the results. Unless there
is solid, empirical evidence that the pro-
ject can be done for a lower cost or in a
shorter time span, arbitrarily overriding
a formal estimate and development plan
courts disaster.

Creeping requirements can be mini-
mized by approaches such as joint appli-
cat ion design o r prototyping. Risk
analysis and quality control will be
niajor aspects of the software team’s
responsibility. Milestones for complet-
ing the project should include the suc-
cessful completion of formal inspections
for at least five deliverables: require-
ments, specifications, source code, test
materials, and user manuals.

Sofimare failures are caused primarily
by errors and poor judgment on the part
of managers, executices, and clients - not
errors made by the technical teams. The
root cause of these failures is the lack of
accurate measurement data, which blinds
management and clients to what is possi-
ble and what might be impossible.

AVOIDING DISASTER. Successful software
projects can result from avoiding the
more serious mistakes that lead to disas-
ter. Specifically, we must

t look at the actual results of similar
projects;

t make planning and estimating for-
mal activities;

t plan for and control creeping
requirements;

t use formal inspections as inile-
stones for tracking project progress; and

+ collect accurate measurement data,
during the current project, to use with
future projects.

T h e r e is n o subs t i tu te for solid
empirical data used by capable project
managers who are supported by auto-
mated estimating and planning tools.
This combination can almost always be
successful. By contrast, no data at all,
unprepared managers, and manual esti-
mating and planning are consistently
characteristic of our industry’s major
software disasters. +

Capem Jones is chairman of‘ Software
Productivity Research, Inc., an intema-
tional manngement-consulting company
nnd a developer of software project-man-
agement tools located in Burlington,
iVassachwetts.

SUGGESTED READINGS ON SOFTWARE RISK AVOIDANCE
T h e following books are

not the only ones on soft-
ware risks, but they cover
the essential topics.

+ F. Brooks, The Mythical
Man il(lonth, Addison-
Wesley, Reading, MA, 1995,
295 pp.: This is the 20th
anniversary edition of a soft-
ware classic. Initially pub-
lished in 1975, Fred Brooks’
thouglithl historical analysis
examined why software is so
often delivered late. T h e
20th-anniversary edition
adds new material and lets
Brooks explore recent
changes in software tech-
nologies.

Engineering Risk Awalysis and
Afumgement, McGraw Hill,
New York, 1989; 325 pp.:
Robert Charette is a pioneer
in the exploration of soft-
ware risk management. All
of his books are useful. This

+ R.N. Charette, Sofhuaye

is a very good introduction
to the overall topic of soft-
ware risk analysis.

Applications Stl-ategiesfibl- Risk
Ana&, McGraw Hill, N e i i
York, 1990, 570 pp.: This
large book is a more con-
plete coverage of risk-related
topics than Charette’s other
book. Both are useful for
software project managers,
and recommended.

+ T. DeiZilarco and
T.Lister, Peoplemaw, Dorset
House, Xew York, 1987,
200 pp.: This book was one
of the first to deal with the
social and even ergonomic
topics that affect the out-
comes of software projects.

t T. Gilb and D.
Graham, Sofiuai-e Inspections,
Addison-Wesley, Reading,
MA, 1993,471 pp.:
Although formal software
inspections were invented in

+ R. N. Charette,

the 1960s by LMichael Fagan
and colleagues a t IBM’s pro-
gramming laboratory in
Kingston, hT, T o m Gilb
has become one of the most
enthusiastic supporters of
the concept.

t S. Grey, Pmctical Risk
Assesmentjil- Pbl-oject
4(lnmzgement, John Wiley &
Sons, New York, 1995, 140
pp.: Managers seldom have
the time or inclination to
absorb the full-scale risk lit-
erature embodied in
Charrette’s or Jones’ SOO-
700-page books. This small,
140-page book provides an
introduction to the topic of
risk analysis.

+ C. Jones, Assessment and
Conwol of‘Softwnre Risks,
Prentice-Hall, Reading,
Mass., 1994, 711 pp.: This
book covers some 65 techni-
cal and sociological risk fac-
tors associated with software

development and mainte-
nance operations. The data
has been collected during the
course of SPRs software-
process assessment activities.
The book includes quantita-
tive data on “best-in-class”
quality and productivity
results derived from the top
10 percent of SPRs clients.

+ C. Jones, Pattems of
Softwai-e System Failwe and
Sziccess, International
Thomson, Boston, Mass.,
1996,250 pp.: This book
provides an analysis of soft-
ware projects larger than
SO00 function points that
occupy the ends of the effec-
tiveness spectrum: They
were either disasters or set
new records for quality and
productivity. On the whole,
management problems
appear to outweigh technical
probleins in both the suc-
cesses and failures.

M A R C H 1 9 9 6

